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ABSTRACT
Educational systems have witnessed a rapid transformation from
the traditional physical classroom to the online teaching mode due
to the COVID-19 pandemic. This sudden shift throws two signifi-
cant questions to the educational policymakers and system design-
ers. (1) How can an instructor improve the teaching performance
over an online teaching platform? (2) Howdoes the instructor under-
stand the students’ learning pace? For answering these questions,
we propose a platform in this paper that analyzes the real-time
presentation video and the facial video feeds from the instructor
as well as the students to explore the visual engagement of the
student towards the lecture contents. However, this is challenging
as the students may get involved in various multitasking instances,
such as taking notes or browsing relevant reading materials. The
crux of this paper is to understand a few real-time opportunistic
moments when the students should visually focus on the presenta-
tion content if they are engaged and been able to follow the lecture.
We investigate these instances and analyze the visual engagement
of the students from their eye gaze and gaze gestures in real-time
during those instances to assess their engagement during an online
class. Our system achieves 71% (standard deviation 10%) accuracy
for all over the scenarios in students’ involvement detection during
the virtual classroom.
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1 INTRODUCTION
Apart from teaching, understanding the students’ progress and
learning ability is one of the primal roles of an instructor in a class.
Proper knowledge about a student’s learning status is needed not
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only to assist the student in coping with the course but also to im-
prove the instructors’ presentation skills. In an in-person physical
classroom, the teacher or the instructor can continuously monitor
the body and eye gestures of the students; such physical eye contact
between the instructor and the students can provide significant
cognitive sources of information for assessing the students’ learn-
ing pace in real-time. However, the COVID-19 pandemic has forced
instructors to conduct the classes virtually through various online
meeting platforms. Unfortunately for different Afro-Asian coun-
tries that belong to the low and middle-economy classes, virtual
classrooms are infancy for a majority of the instructors. Various
recent reports1 have indicated that a majority of the instructors,
particularly the school teachers and the college lecturers from sub-
urban and rural areas, are not accustomed to the online mode of
teaching. Various limitations of the online meeting platforms ex-
aggerate this problem further. For instance, the meeting platforms
can only show the video feeds from hardly 4-8 students, whereas a
typical class size is more than 50, sometimes it crosses 100. Conse-
quently, a teacher can never feel the cognitive connectivity with
the students, which is very much essential in any teaching-learning
process [2, 4, 11].

Interestingly, a few works in the literature [5, 13] discourse the
necessity of the instructor’s enhancement in the teaching process,
which addressed the issues in the teaching system and proposed
various strategies for instructor’s enhancement over a physical
mode of education. On the other side, for understanding the stu-
dents’ learning pace, various recent studies have advocated using
specialized wearable devices [9, 12] such as wearable eye trackers,
smart glasses, and smartphone sensors, etc. for capturing the atten-
tion information through eye dynamics and physiological signa-
ture. However, such specialized devices are never a feasible option
for the low and middle economy Afro-Asian countries. A second
notion of works consider different student engagement detection
schemes [6, 8, 10, 14] by quantifying the visual engagement [3, 6] of
the students over the meeting application. These works primarily
measure a student’s attentiveness by quantifying the amount of
time they gazed on the device’s screen that shows the meeting plat-
form. However, visual engagement gives a very crude idea about
the cognitive attentiveness of a student. During the classes, the stu-
dents can perform various other related activities, like taking notes,
browsing relevant materials over the Internet, etc., which certainly
boosts their cognitive attention towards the class but reduces their
visual engagement.

The crux of this paper is as follows. Although visual engagement
gives a crude idea about the cognitive attentiveness of a student, it is

1https://thelogicalindian.com/education/legrand-30615?infinitescroll=1 (Accessed: Jan-
uary 6, 2022)
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inevitable during certain portions of the lectures, particularly when
the instructor explicitly seeks the visual attention from the student.
For example, when the instructor explains a diagram or displays cer-
tain animations related to the explanation, it is more likely that the
student would focus on the screen. Our proposed method investi-
gates this idea and finds opportunities to infer whether the students
are sufficiently attentive to the lecture during the class hour. Ac-
cordingly, we analyze the local video feeds from the students and
the instructor to map the visual engagement to the cognitive atten-
tiveness correctly. In our method, the video feed of the instructor,
which particularly contains the presentation video along with the
instructors’ facial feeds, is used as the benchmark to extract the
opportunities when a visual engagement from the students is nec-
essary. The method then analyzes the video feed of the students
to find out whether the students show a visual cue towards the
screen and accordingly generates an engagement score for the stu-
dents. We develop a prototype of this method and evaluate it in two
different types of real-time online lecture sessions – online class-
room teaching and group discussions with a presentation (total of
4 sessions, 7 − 12 participants). Our system achieves 71% (standard
deviation 10%) accuracy for all over the scenarios.

2 SYSTEM OVERVIEW
Figure 1 shows an overview of the student engagement detection
system in an online teaching platform where each student and
the instructor use webcam-based system for virtual classrooms.
The proposed system operates using three major components –
(1) the instructor’s presentation video, (2) the instructor’s facial
video feed, and (3) the students’ facial video feed. The former two
components work as the benchmark to determine opportunistic
events when visual engagement from the students is necessary. We
term these opportunistic instances as the “Instructor’s Understand-
ability” because it determines the benchmark for the instructors
to get a perspective about the students’ attentiveness. The related
events on the presentation, like an animation, are termed as the
“Anchor Points”. In contrast, the first and last components jointly
find out the visual engagement of the student in the front screen
during those opportunistic events. Finally, the two later compo-
nents decide the student’s engagement in an online class. While
the instructor’s understandability and the student’s engagement
in the front screen are performed locally at devices on which the
meeting application runs, the concluding student engagement in
the online class is processed at the instructor’s device using the stu-
dents’ video meta-data shared over the platform. Figure 2 outlines
the student engagement detection framework which is primarily
composed of two modules – (a) Anchor Point Extraction, and (b)
Student Engagement Detection. The former module captures the
transitions in the instructor’s presentation video. In contrast, the
latter concentrates on the instructor’s understandability and the
student engagement detection in the front screen and the online
class. In summary, all the videos of the students are processed at
their end and the extracted information is shared with the instructor
for quantifying the students’ involvement.

(a) Anchor Point Extraction: This module runs both the in-
structor and the student’s device and excerpts the anchor points
from the presentation video by analyzing the transition in the

Figure 1: Instructor and students’ system overview for de-
tecting student engagement

Figure 2: Student engagement detection framework

consecutive frames of that video. Each presentation consists of
significant slides and a few insignificant ones that do not contain
any demonstrating points. We utilize the fact at the beginning of
the processing to eliminate such insignificant slides so that the
computation power for running the process is minimized. Further-
more, the significant slides may contain insignificant content, such
as very text-heavy content or a small change in the slide. We fur-
ther remove these insignificant contents for extracting the anchor
events. (Details in Section 3).

(b) Student Engagement Detection: Partially, this module ex-
ecutes on both the instructor and the students’ devices, and the
rest runs on the instructor side to generate the student engagement
scores during the anchor events. The instructor and the engaged
students pursue the presentation video at least during the most
significant anchor events. Hence, the eye gaze changes with tran-
sition in the video frames. We utilize this information to identify
the good presenter (who follows the presentation) and the students
engaged at the front screen. Furthermore, by utilizing the fact, we
find the similarity between the instructor and the student during
the anchor events. But the similarity measure is not trivial as both
the video feed of the instructor and the students are asynchronous.
Moreover, the instructor view is unavailable to the students as it
requires multiple object tracking from the student side. For dealing
with the asynchronous video feed, a delay component is added.
Additionally, as there is no direct view available, a discrete point
comparisonmechanism is used to compare the eye movement of the
instructor and the student for generating the student engagement
score. (Details in Section 4)

3 ANCHOR POINT EXTRACTION
This section describes the steps for extracting the anchor points
from the presentation video. The presentation video is processed
locally at the instructor and the students’ system. In an online
teaching system, the instructor and the students use the same plat-
form for sharing and viewing the presentation document and the

134



Students’ Involvement during Virtual Classrooms India HCI 2021, November 19–21, 2021, Virtual Event, India

Figure 3: Anchor Point Detection Framework

Figure 4: Initial Slide Figure 5: Consecutive
Slide

video feed. Therefore, we consider that all presentation sessions
are streamed at a rate of f fps. Depending on the study outcomes,
the presentation slide is selected as the teaching mode. The overall
framework of anchor point detection is shown in Figure 3.

3.1 Slide Transition Detection
In the presentation slide-based teaching, several insignificant slides
such as starting, ending, and title slides are present. In this module,
we partition the videos to eliminate such insignificant slides. For
segmenting the significant video slices, we rely entirely on the slide
number of the presentation. The slide number is present in all the
slides except for the insignificant one. Therefore, we first locate
the slide number position in the slide. The slide number typically
is spotted either in the upper right corner, lower right corner, or
middle bottom of the slide. During the slide transition, the pixel
values of either of the three portions reasonably change, and the
rest two remain the same.

To detect the slide transition, we apply a 30 pixels grid on the
three pre-defined positions of each video frame to crop the por-
tion containing the slide number. The starting slide with no slide
number is treated as the initial template for matching the sub-
sequent slides. After retrieving the cropped frame portions, we
convert that into a greyscale image and compare each cropped
image with the respective cropped image of the subsequent frame
using mean squared error. During the slide transition, only com-
paring the cropped images with slide numbers produces a high
difference value. In contrast, the rest of the portion comparison
in transition or non-transition comparison generates almost zero
difference value. Hence, we apply a simple threshold value, δ , to
slice the slides. Figures 4 and 5 show the greyscale images of initial
and the next slide, respectively. The comparison of the top right
corner of the two images contributes to a larger pixel difference,
thus concluding the detection of the slide transition event.

3.2 Foreground Video Extraction
Once the slide is detected, our next task is to identify the object
movement within the slide. In the academic presentation, the entire
presentation consists of a single template. Hence, the slide template
acts as the background of the video for the whole of the presenta-
tion. The varying presentation content appears as the foreground

Figure 6: Lecture video
feed at the student end

Figure 7: Foreground con-
tent of the presentation
video frame

substance of the video. Therefore, the slides with invariant con-
tent display a regular pixel pattern. Identification of such patterns
helps split out the presentation content containing the irregular
pattern. This process is analogous to the detection of the intruding
object from the image. Similar to the background scene of the in-
truder object, the regular pattern of the presentation template can
be expressed by the statistical model, and without following the
model is indicated as varying presentation content. Thus, we apply
the background subtraction method for separating the background
template and foreground content.

We use the Gaussian mixture model-based background subtrac-
tion method [17] for identifying the mixture characteristics of the
background template and extracting the foreground movable pre-
sentation content. In particular, each pixel of the frame is described
by a mixture of Gaussian as the presentation video may be impacted
by sudden lighting change effect, addition and removal of content,
and slow-moving content. By learning the variance of each of the
Gaussian of the mixture, the model determines the likeliness of the
Gaussian as a background pixel. The continuous learning process
includes the recent background information for adapting to the
current changes in the frame. Specifically, we look prior 500 frames
of the current frame to estimate the next frame’s pixel trait. Finally,
the pixel values that do not map with any of the background dis-
tributions are considered foreground. The extracted foreground
information containing the varying presentation content is kept as
a binary formatted image.

3.3 Data Cleaning
The foreground video extraction module’s outcome contains the
presentation content and a few scattered points that occur due to the
imprecise learning of the Gaussian parameters. In such a scenario,
we need an image smoothing model to eliminate the scattered
points on the foreground video frame. The general strategy of
image smoothing is to act as a low-pass filtering kernel. However,
we have binary formatted foreground video, containing either of 0
and 255 values. Hence, statistical computation-based filtering such
as mean and Gaussian filtering, which may generate a different
pixel value, is not suitable. Therefore, we select median filtering on
the foreground video to remove such salt pepper random points.
Figures 6 and 7 show the presentation video frame and the extracted
foreground content, respectively.

3.4 Anchor Event Detection
Once we receive the filtered foreground video, our final job is to
identify the anchor point from the varying presentation content. By
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Figure 8: Coincide Interval Detection Framework

anchor point, we especially define animation, image, highlighted,
and short text. However, the filtered foreground video contains not
only the anchor points but also the bulky text information. Further-
more, for registering the change in the human mind, the movable
content must try at the scene for a certain period. Hence, we need
another layer of filtering in addition to the data cleaning module.
For encountering the anchor events, a Spatio-temporal threshold
method is applied. The spatial threshold is required to check bulky
or insignificant changes in the presentation video, whereas the
temporal threshold is needed to eliminate irrelevant non-resistant
content. Finally, we mark an event as an anchor event when the
foreground frame pixel count is within the spacial thresholds δs1
and δs2 and that spacial constraint persists at least for δt number
of frames where δt is the temporal threshold. Any violation of the
Spatio-temporal threshold marks the foreground selection as the
non-anchor event.

4 STUDENT ENGAGEMENT DETECTION
The final module, student engagement detection, comprises two
sub-modules – (1) coincide interval detection and (2) student en-
gagement estimation. The first submodule deals with mapping the
student video with the presentation one during the priorly detected
anchor event, and we call the mapping interval the coinciding in-
terval. The last submodule estimates the student engagement using
the student and instructor video feed during the coincide interval.

4.1 Coincide Interval Detection
Once we trace the anchor events in the presentation video, our
next job is to analyze the students and the instructor’s video to
identify whether the person is looking at the screen. The outcome
of the submodule is two folds. Firstly, the instructor looking at
the screen reveals that they are following the presentation as we
assume that the instructor is performing a single task during the
online presentation session. Hence, they are a good presenter and
acceptable for further student engagement processing. However, the
students may perform multiple activities during the presentation
session. Therefore, our second finding is that the student looking at
the screen may follow the presentation and be eligible for the next
phase of the engagement detection. The overall coincide interval
detection framework is shown in Figure 8.

4.1.1 Gaze Vector Estimation. For detecting a person looking at
the screen, our primal task is to monitor the person’s video feed
captured through the front camera associated with the presentation
running device. Specifically, if a person looks at the screen, their eye
is visible to the video feed. Hence, we estimate the eye gaze to deter-
mine the person’s presence in the session. Instead of processing the
complete video, we choose the person’s video feed for the duration,
which is the same as the slide slice videos from the outcome of the
slide transition module (Section 3.1). Due to the selection of only

the significant slides’ execution time, our computation cost for gaze
vector estimation is reduced. Once we receive the slide event from
the presentation videos, we segment the person’s video feed and
process the individual video feed accordingly.

We use an appearance-based model [15] for detecting the gaze
vector from the person’s video. As part of the pre-processing, the
model first detects the face and eye landmarks for each video frame.
Then, it normalizes each frame to remove any kind of capture issues.
Finally, it feeds the head and the eye information to the multimodal
CNN model, which is trained on the MPIIGaze dataset [16] for
estimating the gaze vector. For each frame, we receive a 3D gaze
direction vector and consider only the gaze vector along X and Y
axes as there exists no such movement along the Z-axis while at-
tending the presentation. Hence, we pass < f rame,дazex ,дazey >
to the consecutive module for each frame.

4.1.2 Gaze Transition Detection. In this component, we capture
the gaze direction vector transition during each of the slide slice
videos. Our primal intuition is that the gaze direction abruptly
changes in the presentation session depending on the presentation
content. Moreover, the standard statistical methods are suitable for
capturing the actual transition [1]. Hence, we rely on the change
point detection methods for detecting the gaze transition. We use
Pruned Exact Linear Time (Pelt) [7] change point detection method
because of three-way benefits. Firstly, it works without knowing
the number of change points present in the system. Secondly, it
runs in linear time and ends up with an optimal result. Thirdly, the
method is unsupervised. It runs on a mechanism that minimizes the
penalized cost when considering a change point in the system. We
use a non-parametric kernel-based cost function, rbf. As the gaze
vector is a multi-variant, we apply a 2-norm on the gaze vector to
make it uni-variant. Finally, after computing the change points, we
receive a set of frame numbers where the gaze transition occurs.

4.1.3 Anchor-Gaze Time Map Detection. The final component of
coincide interval detection module comprises of the mapping be-
tween the anchor events detected from the Anchor point extraction
module (Section 3) and Gaze transition detection (Section 4.1.2). Our
insight is that both the instructor and the student following the
presentation session must look at the screen during the anchor
event. However, in a real-time scenario, a delay may occur due to
technological issues. Therefore, we have set up a delay bound of
d frames where the instructor and the student look at the screen
within d frames after completing the anchor event. Looking at the
screen refers to the change in direction in the gaze direction vector.
Within a slide, if the instructor’s gaze transitions overlap with an-
chor events, we mark that instructor as good presenter and continue
to the next engagement estimation module with the overlapping
frame details. Otherwise, we inform the instructor that their eye is
not following the presentation while presenting. On the other hand,
if the overlap is present in the student’s gaze transition and anchor
event within a slide event, we track the frame number and pass
that to the next module. In the absence of any overlap, we mark the
student as non-engaged and exclude them from the current slide
for further processing.
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Figure 9: Student Engagement Estimation Framework

4.2 Student Engagement Estimation
The goal of the student engagement estimation module is to find
out whether the student is following the presentation session. We
assume that the good presenter looking at the screen is analogous to
the following presentation. Therefore, we compare the eye move-
ment sequence of the instructor and the student during the frames
in the anchor-gaze time map. Finally, the percentage of the similar-
ity is used to define the engagement score of the student for that
course of time. Figure 9 shows the overall framework of the student
engagement estimation module.

4.2.1 Eye Ball Detection. For comparing the instructor and the
student’s presentation followings, our first job is to detect the face
followed by the eyeball. Therefore, we pick out the student and
the instructor’s video portion only for the frames belonging to
the anchor-gaze time map. Then, we apply the Dlib 68 facial land-
mark model on each grayscaled frame to detect the person’s eye
landmarks. Each of the left and right eyes comprises 6 landmark
points, and an eyeball exists inside that region. Thus, we pick up
all the pixels within that region, considering the entire eye region.
Each eye consists of two pixel-wise different parts, the cornea and
eyeball. However, the distinguishable pixel is not fixed due to the
ambiance of light reflection on the face. Therefore, we propose a
clustering-based segmentation scheme where the cluster size is
two. Specifically, we apply k-means clustering on all the grayscaled
eye pixel values. The resultant clusters contain dark and light pixel
values, respectively. The cluster with dark pixels is considered as
eyeball pixels. We determine the eye center of the current frame
by taking the average of all the points belonging to the eyeball
cluster. Finally, the generated eyeball information is recorded as
< f rame, eyeindex , cx , cy >, where, f rame denotes the frame num-
ber, eyeindex is either of left or right eye, cx , and cy are the x and
y axes values of the eyeball center, respectively.

4.2.2 Eye Ball Sequence Generation. In the current component, we
generate the eyeball sequence during the anchor-gaze time map
following the gaze gesture tracking method [6]. The eyeball center
corresponds to the first frame of the anchor-gaze time map refer
as a reference eyeball position. In the subsequent frames, we com-
pute the magnitude shift by taking the difference of the eyeball
center of the current and the next available consecutive frame. The
magnitude shift is calculated according to Table 1. The reported eye-
ball sequence contains the structure < f rame, eyeindex , symbol >
where, symbol is the gaze shift symbol from Table 1.

4.2.3 Engagement Estimator. In the final phase, we match the gen-
erated eyeball sequences of the instructor and the student. Our
intuition is the engaged student must follow the same eyeball se-
quence as the instructor. However, in reality, a marginal change in
the eyeball center makes a different sequence outcome. Moreover,

Table 1: Magnitude shifts and corresponding symbols

x-axis
shift

y-axis
shift

Shift
direction

Shift
symbol

= 0 = 0 No shift X
>0 = 0 Left L
<0 = 0 Right R
= 0 >0 Top T
= 0 <0 Bottom B
>0 >0 Top Left M
>0 <0 Bottom Left N
<0 >0 Top Right O
<0 <0 Bottom Right P

the sequence length is not fixed. Therefore, we figure out the eye-
ball sequence similarity using the longest common subsequence
method for each set of sequences from the instructor and the stu-
dent. Finally, the student engagement score is computed by taking
the percentage of the longest subsequence length out of the instruc-
tor’s anchor event frame count. In the presence of multiple anchor
points in a single slide event, we simply average the engagement
score. If the engagement score is above the threshold value ϕ, we
consider the student is engaged. Otherwise, we mark the student as
non-engaged for that slide.

5 EXPERIMENTS AND OBSERVATIONS
For understanding the effectiveness of the proposed system, we
have considered two types of real-time online lecture sessions – (S1)
Online classroom teaching scenario and (S2) Group meeting with
a formal presentation by a single presenter. We have investigated
in total 4 lecture sessions, two from each of the types. Each online
classroom lecture session lasts for one hour, whereas that value
for each group meeting is 1 hour 20 minutes. For the classroom
scenario, although we have 55 students in the class, only 6 are
ready to share their videos. Therefore, the effective participants
are 7, including the instructor. For the group meeting scenario, we
have an average of 10 participants (min = 8, max= 12). Out of
all participants, 2/3 are male, and the rest are female; 1/2 of the
participants wear glasses. All the participants belong to the age
group of 24 − 35 years. 90% of the participants are undergrads or
research scholars, and the remaining are faculty members at the
academic institution.

Ground truth annotation is one of the major challenging tasks
for our system evaluation as engagement measure is subjective.
For ground truth annotation, we have asked all the participants
(the instructors and the students) to capture the front device screen
using OBS studio. The participants use the laptops only with CPU
computing units and a standard embedded webcam. The screen
capture and the participants’ video feed are used to generate the
ground truth information.

The instructors choose the presentation topics for the group
meeting scenario, whereas the classroom presentations contain the
subject content. We have instructed the instructor to use different
presentation content such as animation, image, and highlighted
text. Apart from that, the participants are informed about inserting
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slide numbers in the slide. They are open to using any presentation
template. However, each presentation consists of a single template.
Except for the ground truth annotation collection setup, there is no
additional instruction to present the lecture. All participants but
the instructor can interrupt during the lecture.

We havemarked the participants as Engaged orNon-Engaged dur-
ing a video slice (average duration of = 2 minutes, min= 1minute,
max= 5 minutes) depending on whether the participant is looking
at the lecture presentation for that window. Each video slice con-
tains a single slide transition. We have shared the video slices with
the participants and asked them to self annotate their video slices.
The annotated data reveals that in 71% cases, the participants are
Engaged and the remaining cases are Non-Engaged.

We compute the participants’ (participated as students) Engage-
ment score on a scale of [0 − 100] based on the similarity in the
gaze movement of the instructor and the students. Then, we de-
cide a threshold point for partitioning the score into Engaged and
Non-Engaged cases using K-Means clustering. Our assumption is
each student is a mixture of Engaged and Non-Engaged status dur-
ing the lecture session. Finally, the computed Engagement status
is compared with the annotated value for calculating the accuracy,
negative predictive rate and true negative rate of the system.

Table 2 summarizes the overall performance of the system for
80 percentile cases of all the 4 scenarios, where C1 and C2 refer to
the classroom lecture scenarios; andM1 andM2 refer to the group
meeting scenarios. Our system achieves up to 93%(9%) accuracy
for the classroom scenarios, whereas that value is 70%(7%) for the
group meeting scenarios. Overall performance of the system con-
cludes at an accuracy of 71%(10%). As we have captured the lecture
sessions without restricting the participants, we have received a
few participants’ videos feeds with either improper environment
conditions or occluded faces. If the unavoidable condition persists
throughout the video, we exclude the participates from the further
evaluation. Otherwise, even if the inevitable situation is present
partially, we have processed the participants. In such cases (M1),
the overall system accuracy is reduced due to the unidentified faces.
For the students’ understandability from the instructor perspec-
tive, Non-Engaged students identification is more important than
the Engaged one. Therefore, along with the engagement detection
accuracy, we have studied Negative Predictive Value and True Neg-
ative Rate. Negative Predictive Value defines true negative events
encountered out of all the detected negative events. In contrast, the
True Negative Rate illustrates true negative events out of the actual
negative events. A high Negative Predictive Value of 91%(6%) states
that our system detects less number of false-negative events. Hence,
the system filter out the Non-Engaged students more precisely, and
sharing that information of the Non-Engaged students is helpful to
the instructor for understanding the students.

We further analyze individual participants’ performance of group
meeting scenarioM1 in Table 3. Individually, the proposed system
achieves accuracy, negative predictive value, and true negative
rate up to 85%, 92%, and 92%, respectively. Although we receive 12
participants’ video feed, we exclude three participants as environ-
mental issues impact the face detection. Hence, further processing
for the engagement score is not performed. Table 3 shows that the
engagement status are poorly identified for the participants u03

Table 2: Engagement Detection System Performance: Indi-
vidual Scenarios (80 percentile cases)

Online
Teaching
Scenarios

Accuracy
(Avg.%(s.d.%))

Negative
Predictive Rate
(Avg.%(s.d.%))

True
Negative Rate
(Avg.%(s.d.%))

C1 93(9) 100(0) 92(12)
C2 58(12) 100(0) 47(20)
M1 62(13) 75(14) 77(14)
M2 70(7) 88(12) 73(10)
Average 71(10) 91(6) 72(14)

Table 3: Engagement Detection System Performance: Indi-
vidual Participants of Group Meeting ScenarioM1

Participants Accuracy
in %

Negative
Predictive
Value in %

True
Negative
Rate in %

u00 46 50 86
u03 33 100 20
u04 46 75 55
u06 69 78 78
u10 85 92 92
u11 62 67 89
u12 62 86 60
u13 38 50 12

and u13. A deeper look at the individual data states that the envi-
ronment light varies rapidly for the participant u03. Therefore, for
those poor light conditions, the face of u03 is not detected for the
Engaged situation, and the accuracy of that participant is reduced.
However, the accurate negative predictive value shows that the
system precisely detects the Non-Engaged scenario. On the other
side, the participant u13 was mostly drowsy, but he is trying to
follow the session. Therefore, the annotation is marked as Engaged.
However, due to the drowsiness, the eye is not detected properly
and detected as Non-Engaged. This leads to a drop in accuracy value
for u13.

6 CONCLUSION
To the best of our knowledge, the proposed approach is the first
of its kind that captures discrete anchor events to incorporate stu-
dent engagement. Moreover, our method is one of the systems
that simultaneously captures both the instructor and the student’s
performance during the online session. While it captures the stu-
dents’ engagement or attentiveness as its primary design goal, the
platform also signifies the quality of instruction by finding out
the instances when a majority of the students are inattentive. The
designed prototype is currently tested on two types of real-time
online lecture sessions, and we observe a satisfactory performance
( 71% accuracy) of the system.

However, the designed prototype of the proposed platform is
still in a nascent stage. We need to focus more on its real-time
performance and perform a thorough usability study in the wild to
assess its acceptability among the targeted users. Video processing
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is always a heavy task, and therefore, we believe that further opti-
mization of the system is possible. We keep these detailed studies
as the future work for this system.
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