
SmartWatch for Wall Writing: Real-time
Transcription of Wall Writing from Inertial Sensing

Snigdha Das, Satyam Awasthi, Abdul Shamnar P, Pradipta De, Sandip Chakraborty, Bivas Mitra

Abstract—This paper presents a smartwatch-based application,
called WatchScribe, to convert any wall writing to virtual board-
works. Users can scribe anything over this virtual whiteboard
with zero-bootstrapping by mimicking the writing on the wall
with a pen. Transcribing wall-writing with a smartwatch is
challenging because of two reasons. (a) As the smartwatch’s
orientation changes continuously due to wrist movements, the
pen’s locus is different from that of the smartwatch. (b) There
are events when the user lifts the pen from the whiteboard and
starts at a different position to draw the next stroke. WatchScribe
leverages locomotive data from a smartwatch to estimate the
pen’s locus using an unsupervised method. Further, it uses a light-
weight approach to extract the writing micro-gestures from the
estimated pen’s locus and reproduces a real-time transcription of
the wall-writing. We apply qualitative human-driven and novel
quantitative metric-based evaluation techniques for checking the
correctness of WatchScribe over the data collected from 10
participants in a very diverse setup. Compared to the closest
baseline that uses a smartphone’s corner as a pen, we achieve an
average 9% reduction in disparity score and 27% improvement
in average accuracy in terms of decipherability of the reproduced
transcripts.

Index Terms—smartwatch; virtual whiteboard, free-form writ-
ing, wall-writing

I. INTRODUCTION

During the COVID-19 pandemic situation, the teaching
mode has been majorly shifted from a physical classroom to a
virtual one through various interactive meeting platforms. For
running an online classroom where the students and teachers
are not co-located, the first requirement is to set up an online
teaching infrastructure that can replace a physical classroom
environment. Such infrastructure includes devices like pen-
tablet or touchscreen-based computers that can replace a phys-
ical whiteboard. Apart from the classrooms, whiteboards are
also indispensable and are widely used in various business and
corporate meetings. However, a touchscreen-based system or
a pen-tablet might not be readily available to every individual
associated with such a profession. A policy report by United
Nations concerning the education during COVID-191 have
indicated that the pre-primary and primary teachers typically
lack the necessary digital skills and even need technician’s
support to set up a pen-tablet. For example, the report indicates
that only 64 percent of primary and 50 percent of secondary
teachers in sub-Saharan Africa have received a minimum
training, which often does not include necessary digital skills.

Considering the rapid penetration of smartwatches across
every corner of the globe [1], in this paper, we explore

1https://www.un.org/development/desa/dspd/wp-content/uploads/sites/22/
2020/08/sg policy brief covid-19 and education august 2020.pdf (Access:
October 1, 2021)

whether we can convert any room-wall to a virtual whiteboard
with the help of a smartwatch having simple inertial sensors.
Regular smartwatches are typically cheaper but have wider
usage compared to specialized systems such as pen-tablets.
Therefore, a virtual whiteboard application using a smartwatch
provides significant value addition to the device. The core
idea of developing such a system would be to track the
arm movement using the inertial sensors embedded with the
smartwatch for estimating the locus of the pen used for writing
virtually on the wall. The locus of the pen can then be used for
real-time continuous reproduction of the boardwalk. The pen’s
locus can thus directly be projected on the wall for having a
realistic feeling of writing over a virtual whiteboard (as shown
in Fig. 1), or can be streamed directly to other audiences. The
primary advantage of using WatchScribe is that it does not
require particular digital skills for using a specialized system
like a pen-tablet. The teachers or the presenters can directly
write on a vertical surface that they are already comfortable
with. However, the major challenge in this task is to devise a
complete unsupervised zero-bootstrapping approach for esti-
mating the pen’s locus from the arm movement, as practically
anything in any language can be scribbled on a whiteboard.
Furthermore, it can be noted that the pen’s locus is different
from the arm or the wrist movements, whereas the inertial
sensors attached with a smartwatch can only capture the arm
or the wrist movements.

Several recent research works have focused on tracking the
arm movement from inertial sensing data [2]–[6]. Many of
these works have also used the smartwatch data for handwrit-
ten text identification [2], [7]–[13] or sign-language interpre-
tation [14], [15]. However, capturing unconstrained scribbles
during a boardwork requires an altogether different approach
from the existing ones. Except [2] and [13], the proposed
methods primarily work on a fixed set of characters for a fixed
language; therefore, they use pre-trained supervised models to
recognize the characters from the raw sensor data. However,
a user can scribe anything on a whiteboard, either texts or
symbols or figures, or any combination of them. Therefore,
a supervised model fails to recognize characters in those
scenarios correctly. Although the approach proposed by Yin et.
al. [13], called AirContour, has an unsupervised component for
wrist-trajectory generation from the smartwatch inertial sensor
data, the representation of the generated trajectories in the
form of a meaningful character still uses a supervised method.
Further, both AirContour and ArmTrack [2] were developed
for on-air writing using a smartwatch. Therefore, these ap-
proaches can compute continuous trajectories only, which are

Fig. 1: (a) WatchScribe in action; (b) – (f) Challenges in physical whiteboard capture using a smartwatch: (b), (c) indicate
that the locus of the pen is different from the locus of the smartwatch; also the orientation of the smartwatch changes during
the course of writing, (d) shows the first stroke of a multi-gesture character ‘K’, (e) shows the pen-up operation during the
writing, (f) indicates the moment when the pen touches to the board again to continue the next stroke of ‘K’

not suitable for unconstrained scribble representations, for the
reasons explained below.

As we mentioned earlier, one must track the pen’s locus
during the boardwork, based on the inertial sensing data from
the smartwatch. However, smartwatch sensors attached to the
wrist are limited in their precision in generating such a locus.
Fig. 1 illustrates the challenges in designing such a system.
First, the locus of the pen and the locus of the wrist-worn
smartwatch are not aligned. Therefore, the gesture-trajectories
computed based on the smartwatch’s inertial sensors differ
from the pen’s locus. Besides, the smartwatch orientation
keeps on changing during the boardwork, depending on the
factors like the curvature of the text, height of the user versus
height of the text, size of the text, and so on. Hence, a simple
trajectory generation from the smartwatch’s inertial sensing
data does not work in this case. Second, as shown in Fig. 1(d)–
(f), any boardwork scribble is a combination of multiple small
free-form strokes of basic shapes (like lines, curves, etc.),
which we call micro-gestures. A script can have a single
micro-gesture (for instance, the English character ‘C’) or
multiple micro-gestures (say, English character ‘K’, composed
of three micro-gestures). Multiple micro-gestures come as a
sequence of first drawing the line, then a quick act of lifting
the pen and moving to the next starting point to continue,
designated hereafter as the pen-up/pen-down (PUPD) micro-
gesture. Approaches like AirContour [13] and ArmTrack [2]
fail to capture such PUPD micro-gestures. To correctly capture
the boardwork scribbles, the micro-gestures must be faithfully
identified based on the pen’s estimated locus.

Owing to these challenges and the limitations of the existing
works, we develop WatchScribe, which aims to capture any
physical boardwork in real-time by accurately identifying
various micro-gestures using smartwatch data (Section II) and
thus can project them on a virtual whiteboard in a real-time.
The system does not require any bootstrapping since we use
a complete unsupervised approach without any pretraining.
Further, it is a usable one-shot system that does not require
any prior writing practice using the device. We use locomotive
data from the smartwatch to calibrate the equipment towards
a fixed orientation and then estimate the locus of the pen by
computing the locus of the smartwatch and projecting it over

the 2D plane of the wall that acts as the virtual whiteboard
(Section III). To eliminate the PUPD micro-gestures, we
develop an intelligent approach based on clustering the sensor
data and then identify the micro-gestures corresponding to the
boardworks (Section IV).

WatchScribe has been implemented as an Android appli-
cation over a Moto-360 smartwatch. We have carried out
thorough experiments with 10 participants including both right
and left-handed with boardwork scribbles using the alphabets,
digits, and mathematical symbols from two different languages
– English and Bengali (total 133 characters), and 36 carefully
chosen words from each of the two languages (for English,
the first character in both uppercase and lowercase, so a total
of 72 words). We develop a novel quantitative metric-based
technique followed by a qualitative human-centric method
for evaluating the decipherability of the transcripts generated
by WatchScribe (Section V). Relative to the closest baseline
[16], we achieve an average 9% reduction in the disparity
score from the metric-based quantitative evaluation and a
27% improvement in average decipherability accuracy from
the human-centric evaluation (Section VI). WatchScribe takes
overall 0.52 seconds median running time with a standard
deviation of 0.29 seconds, which demonstrates the suitability
of WatchScribe to generate real-time transcripts (Section VI).

II. SYSTEM OVERVIEW

Fig. 2 shows the overall architecture of WatchScribe, which
is primarily composed of two modules: (a) Pen Locus Esti-
mation, and (b) Transcription Generation. WatchScribe gets
the locomotive (accelerometer & gyroscope) data from a
smartwatch, processes and generates a real-time transcription
of the boardwork. The continuously generated transcript can
be projected on the wall to provide a virtual whiteboard
environment to the teacher or presenter and can also be
streamed simultaneously to the devices (laptop, desktop, or
mobiles) of other participants or observers.
(a) Pen Locus Estimation: This module estimates the locus
of the pen from the locomotive (accelerometer and gyro-
scope) data captured from the inertial sensors embedded over
the smartwatch. First, the sensor stream is pre-processed to
eliminate any noise. Next, we apply an Euler angle-based

Fig. 2: WatchScribe System Architecture showing the on-device pen locus estimation & transcription generation from the
smartwatch inertial sensing.

method [17] to correct the frame of reference (FoR) of
the smartwatch to calibrate the gyroscope readings. Finally,
we estimate the pen’s locus from the calibrated gyroscope
readings. Notably, the estimated pen’s locus comprises of (i)
single or multiple micro-gestures, most of which correspond to
the written scripts, as well as (ii) the pen-up and the pen-down
(PUPD) events (Details in Section III).
(b) Transcription Generation: This module generates the
final transcriptions by extracting the relevant micro-gestures
from the pen’s locus estimations. Boardwork transcription re-
quires putting together multiple micro-gestures after eliminat-
ing any PUPD micro-gesture. We identify the PUPD activities
leveraging the sensor signatures, which can mark those events.
Since the locus between the pen-up and pen-down does not
lead to any content, this module discards these micro-gestures
to generate the final transcription (Details in Section IV).

III. ESTIMATING PEN LOCUS

As shown in Fig. 3a, any boardwork can be transcribed to
its digital form by continuously estimating the locus of the
pen. Although the locus can be estimated by continuously
computing the relative displacement of the pen-tip from its
acceleration, this process is challenging when the locomotive
data is captured from the wrist-worn smartwatch. The reasons
follow. (1) Accelerometer gives the proper acceleration with
respect to an instantaneous rest frame, which is different from
the coordinate acceleration. Incidentally, we need to compute
the displacement of the pen-tip with respect to the virtual
whiteboard, and thus need the coordinate acceleration, which
is the acceleration with respect to a fixed coordinate system
(here the coordinates of the virtual whiteboard). (2) The
existing approaches for estimating the coordinate acceleration
from the proper acceleration are known to be error-prone [18],
and thus can not be applied to compute displacements minutely
on a fine scale, which is required in our case for properly
decoding individual characters of the written text. An alternate
approach to solve this issue is to consider the fact that the
translation displacement on a 2D plane is equivalent to the
angular displacement across the axis perpendicular to that
plane [13]. For example, in Fig. 3a, we observe that the pen’s
locus over the y-z plane (the vertical plane of the board) can
be calculated from the angular displacement along the x-axis
(we call this axis as the primary axis for the boardwork).
Notably, this method can only be applied when the sensor is
mounted at the pen-tip, such that the direction of the angular

(a) Sensor on the pen-tip (b) Sensor on the smartwatch

Fig. 3: Computing the locus of the pen: (a) the angular
drift along x-axis gives the locus of the pen-tip. (b) As the
smartwatch orientation changes due to the wrist movement,
all the axes undergoes rotation.

displacement fits along the x-axis. However, Fig. 3b indicates
that the smartwatch orientation gets changed continuously
during boardworks, due to the flexion and extension of the
wrist [7]. Consequently, the gyroscope on the smartwatch
experiences angular displacements across all three axes. This
makes the locus estimation of the pen on a fixed 2D coordinate
system challenging when the data is captured over a wrist-
worn smartwatch.

To solve this problem, intuitively, we have to calibrate
the gyroscope readings towards a fixed coordinate system to
eliminate the unintended rotational drifts across all the axes
except the primary axis for the boardwork. For this purpose,
we first pre-process the raw locomotive data for external
noise filtering and then apply a rotational kinematics-driven
approach for gyroscope calibration. Let −→ra = [rax, ray, raz]
and −→rω = [rωx, rωy, rωz] be the raw accelerometer and
gyroscope readings from the smartwatch, where rax, ray , raz
denote the accelerometer readings, and rωx, rωy , rωz denote
gyroscope readings, at the x, y and z axes, respectively. The
details follow.

A. Data Pre-processing

We first apply a noise removal step to ensure that only
the sensor data corresponding to the relevant boardwork is
extracted. We capture the raw sensor data at the maximum
sampling rate supported by the smartwatch for higher fidelity.
However, this makes the data noisy, as even a minor arm
movement can lead to a variation in the sensor readings. Since
the major signal components corresponding to the boardwork
events are in low-frequency domain, we apply a low pass
filter with a predefined passband frequency F (empirically fix

F = 2Hz) along all axes for removing the noise and obtain
filtered streams −→a and −→ω , from the raw sensor data stream
−→ra & −→rω, respectively.

B. Gyroscope Calibration

In order to calibrate the gyroscope readings with respect to
a fixed coordinate system, we consider the Earth’s reference
frame as the frame of reference (FoR) for all the computations.
To eliminate the additional angular drifts that arise due to the
flexion and extension of the wrist, WatchScribe continuously
computes the change in the orientation angle with respect to
the FoR, and then projects the gyroscope readings on the FoR.
The detail follows.

(a) Rotation across each axes (b) Euler Angle Computation

Fig. 4: Adjusting smartwatch orientation towards the Earth’s
reference frame, ‘XYZ’ represents the axes of the Earth’s
reference frame and ‘xyz’ represents the current axes of the
smartwatch.

1) Orientation Angle Computation: For estimating the
smartwatch orientation concerning the FoR, we first compute
the Euler angles [17], specifically the Roll (φ), Pitch (θ)
and Yaw (ψ) angles. Fig. 4a shows these angles, where
the horizontal position of the smartwatch (XYZ space) is
considered the FoR for the sensors. To compute the Euler
angles, we follow the ‘xyz’ rotation sequence, as shown in
Fig. 4b. Here we first give a rotation with angle φ about the
x-axis (which reorients the y-z plane), followed by the rotation
with angle θ about the y-axis (which reorients the x-z plane,
axis x changes to x’), and finally the rotation with angle ψ
about the z-axis (which reorients the x-y plane, projects axis
x’ over X). Now, to compute these angles, we take the help
of the filtered accelerometer readings across the three axes
(−→a = [ax, ay, az]), as the translational motion at one plane
(say, yz) can be used to compute the rotational drift across
the primary axis (say, x) of the boardwork and vice versa.
However, using the proper acceleration readings across the
three axes of the accelerometer, we can compute only any two
of these three angles by fixing the gravitational acceleration
towards the Z-axis of the FoR. We choose to calculate the
values of φ and θ, as these two angles get the maximum
impact due to the gravitational acceleration, which shows a
prominent signature in the accelerometer readings. Following
Fig. 4b and the standard rotation matrices for Euler angle

computation [17], we compute φ and θ from −→a as follows2,

φ = atan2(ay/az), θ = atan2(−ax/
√
a2
y + a2

z)

2) Computing Rates of Change of the Euler Angles: Next,
we compute the third angle ψ from the estimated φ & θ and
the gyroscope readings, by applying the kinematic relation
used in [19]. Essentially kinematic relation provides the rates
of change of Euler angles Ώ = [φ́, θ́, ψ́], which indicate the
rates of change in the angular displacements with respect to
the Earth’s reference frame. Following [19], we compute Ώ
from the previously computed φ and θ, along with the filtered
gyroscope readings −→ω = [ωx, ωy, ωz] as below.

φ́ = ωx + (ωysinφ+ ωzcosφ)tanθ

θ́ = ωycosφ− ωzsinφ
ψ́ = (ωysinφ+ ωzcosφ)/cosθ

C. Computing Angular Displacement to Estimate the Pen
Locus

Finally, we estimate the locus of the pen by calculating
the angular displacement from the rates of change of Euler
angles

−→
Ω . Precisely, we compute the angular displacement

vector Gt by integrating the rates of change of the Euler angles
at any time instance t ∈ (0, T). For numerical integration,
we apply the Trapezoidal rule as Gt = Gt−1 + Ώt ∗ δt,
where, Gt, Ώt, and δt represent the angular displacement
vector at instance t, rates of change of the Euler angle vector
at instance t, and the interval between two subsequent time
instances, respectively. Since the start of the writing on the
board denotes no orientation change (as we are considering the
Earth’s reference frame as the FoR), we initialize the starting
point Gt at t = 0 as [0, 0, 0].

D. Projecting the Locus on the Vertical Plane

The final task is to project the computed locus on a vertical
plane, to mimic the boardwork in a digital form. Ideally, as
shown in Fig. 4a, we should align the z-axis of the smartwatch
with the Z-axis of the Earth’s reference frame (FoR), while
computing the orientations. However, during a boardwork, the
smartwatch typically remains in a vertical position where, in
general, the x-axis of the smartwatch gets aligned with the Z-
axis of the Earth’s reference frame (FoR). To fix this alignment
at runtime, we identify the axis of the smartwatch (say, x-axis),
which experiences the gravitational acceleration component
and aligns that axis towards the Z-axis of the FoR. This allows
us to project the locus of the smartwatch on the Y-Z plane of
the FoR.

IV. TRANSCRIPTION GENERATION

Once we trace the locus of the pen, our next task is to
discriminate the micro-gestures reflecting the actual writing
vis-a-vis the PUPD events. We first extract the required
features to characterizes PUPD events and then isolate PUPD

2The detailed calculations can be done following the rotation angle com-
putations as discussed in [17].

micro-gestures from the continuous micro-gestures to generate
the final transcription.

A. Features for PUPD Micro-gestures

While writing a character having multiple micro-gestures,
a user typically performs the following actions in sequence
– (1) draw a stroke, (2) lift the pen up from the board and
put it at the starting position of the next stroke, (3) draw
the next stroke. As lifting of the pen and moving it to a
new starting position are performed in a coordinate plane,
which is different from the writing plane (the plane of the
virtual board), we typically observe a sharp deviation in the
sensor data in the axes other than the primary axis for the
boardwork. However, we cannot use a simple threshold-based
approach to compute such deviations, as the absolute value of
the acceleration readings depends on multiple factors like the
arm posture, the pressure applied on the wall while writing,
cursiveness of the text, etc. Therefore we use an intelligent
and novel approach by applying a hierarchical clustering-based
approach over the gyroscope data, as follows.

Let P ik and Dj
k denote a peak (a local maximum) at time

instance i, and the immediately next dip (a local minimum) at
time instance j, respectively, on the gyroscope readings across
the axis k where k ∈ {x, y, z}. Let d(i,j)

k = (P ik −D
j
k) be the

local deviation from the gyroscope readings for the axis k.
Interestingly, the user might rotate his arm while performing
the PUPD actions; therefore, the dip corresponding to a peak
can also be observed on two different axes. Therefore, we
also compute the inter-axes deviation as d̂k

(i,j)
= (P ik −D

j

k̄
),

where k and k̄ are two different axes. Let D be the set of
all these deviation values, both intra-axis deviations and inter-
axes deviations. Next, we need to find out which of these
deviation values correspond to the micro-gestures correspond
to the actual writing and the PUPD micro-gestures.

B. Detecting PUPD Micro-gestures

To detect PUPD micro-gestures, we implement k-means
clustering on D (with clust size = 2), relying on the
observation that the deviations in the gyroscope signal during
PUPD events would be higher than those during writing
events. Subsequently, we obtain two clusters Cl1 and Cl2.
Since PUPDs are the occasional events, hence ideally, the
cluster corresponding to the boardwork micro-gestures would
be larger than that of the PUPD micro-gestures; we label the
two clusters accordingly. However, there can be certain points
with high deviations even within a single stroke (ex. while
writing the English character ‘K’ – there is a sudden change
in the axes orientation when one switches from the stroke ‘�’
to the stroke ‘�’) – we call these points as the sparse points.
These sparse points need to be separated from the PUPD
micro-gestures.

We detect and eliminate the sparse points by applying a
second level k-means clustering (clust size = 2) on the
smaller cluster Clc (say, c = argmin(|Cl1|, |Cl2|)), obtained
in the previous step. Let C̄l1 and C̄l2 be the resultant clusters,
where Clc̄ (say, c̄ = argmin(|C̄l1|, |C̄l2|)) be the smaller

one. We compute the Silhouette index [20] σ and σ̄ of the
candidate clusters Clc and Clc̄ respectively, which indicate
the cohesivity of the corresponding clusters. Among the two
candidate clusters Clc and Clc̄, we choose the cluster with the
highest silhouette index, which eventually reflects the PUPD
micro-gestures. We designate this cluster as PUPD cluster and
denote as ClPUPD. The other clusters represent the boardwork
micro-gestures; hence it is expected that the deviations depict-
ing strokes in character ‘K’ will be in other clusters. Once we
get the cluster corresponding to the deviation points under the
PUPD events, we drop the locus corresponding to the time
instances (i, j) associated with each of the deviation points in
that cluster.

V. EVALUATION METHODOLOGY

To evaluate the accuracy of the generated transcripts, we
need ground truth writing data with which the generated
transcripts can be compared with. To collect such ground-
truth data, we used either (a) a Wacom Pen-tablet, or (b) a
touchscreen monitor, depending on the availability of the same
with the volunteers, both mounted vertically on a wall.

A. Dataset Used for Experiments

The dataset used for the experiments are scripts from two
languages - English and Bengali. For each of the languages, we
consider all the characters and digits along with mathematical
symbols such as (‘+’, ‘-’, ‘x’, ‘/’, ‘(’, ‘)’, ‘{’, ‘}’, ‘[’, ‘]’) for
writing them individually over a whiteboard. Consequently, we
have a total of 133 characters – 52 uppercase and lowercase
alphabets with 10 digits in English, 51 alphabets with 10
digits in Bengali, and 10 mathematical symbols. Apart from
the characters, we consider 36 unique English words3 and 36
unique Bengali words. For the English words, we use two
variants – (a) all characters in lower case, (b) only the first
character in upper case, and rest in lower case; this gives us a
total of 72 English words. The length of the words vary from 2
characters to 5 characters. The words have been chosen based
on combinations of phonetics – like the corresponding vowels
and consonants in both the datasets.

B. Human Experiments

We recruited 10 volunteers for the human study4, including
8 male and 2 female, aged between 20-35 years. Out of the
10 participants, one of the participants used the left hand
for writing. The participants scribe over the writing medium
wearing a Moto360 smartwatch (with Android Wear OS 2.0)
on the preferable wrist (left or right) in their convenient
way. For capturing the ground-truth data and separating the
boardwork activities from others, we instructed the participants
to hold the pen/stylus at a fixed position for 2 seconds, before

3‘About’,‘And’, ‘Apple’, ‘Been’, ‘Buy’, ‘Can’, ‘Cow’, ‘Day’, ‘Even’, ‘For’,
‘Game’, ‘Green’, ‘Happy’, ‘Have’, ‘Hello’, ‘Human’, ‘Issue’, ‘Job’, ‘Know’,
‘Long’, ‘More’, ‘New’, ‘One’, ‘Play’, ‘Quick’, ‘Run’, ‘Seven’, ‘Some’, ‘The’,
‘Under’, ‘Very’, ‘Was’, ‘World’, ‘Xenon’, ‘Year’, ‘Zone’.

4Institute Ethical Committee approval for human experiments is obtained.
The volunteers have signed a consent form to participate in the data collection
process.

and after each scribe, which indicates the start and the end
of each writing session. In these set of experiments, the
volunteers have not been given any training a priori, and they
have been asked just to use the system freely.

C. Performance Metrics

Based on the collected ground truths, we evaluate the
performance of WatchScribe from two different aspects –
(a) visual similarity between the ground-truth scribbles and
the generated transcripts, depicting the decipherability of the
produced transcripts on the virtual whiteboard, and (b) metric-
based evaluation to quantify the disparity between the ground-
truth scribbles and the generated transcripts. The details follow.

1) Decipherability of the Generated Transcripts: To an-
alyze the decipherability of the generated transcripts, we
perform a human-driven evaluation, where we recruited 24
validators (different from the volunteers) to decipher the
texts in the generated transcripts. We shared a form with
the validators displaying images of generated transcripts. For
each of the transcripts, the validators had three chances to
decipher the corresponding text. From the validation inputs,
we compute the ith chance accuracy, termed as i-accuracy as
follows. Let there be N different validators, and a transcript
has been correctly recognized by Di number of validators
within ith chances. Then i-accuracy (Ai) for that transcript
is defined as Ai = Di

N . We observed a marginal improvement
(0.61%) in A3 compared to A2. However, the improvement
is considerable (3.76%) if we move from A1 to A2. This
indicates that the second chance is sufficient to decipher most
of the transcripts. Accordingly, we use A2 in our evaluations
and use the term ‘accuracy’ to indicate the decipherability
measured with A2.

2) Disparity with the Ground Truth: The key to designing
the scheme is to compute if the two images of a board-
work scribble, the ground-truth image and the image of the
reconstructed transcript, have the same pixels highlighted,
and if not, then how large is the disparity. Locality sensitive
hashing can be used to compute such a disparity measure [21],
[22]. We compute the disparity between the images αws, αgp
constructed from different methods – WatchScribe & Gy-
roPen [16], respectively, and the ground truth αg represented
by the image of the ground truth script. The main steps are
as follows. First, we crop all the images (generated & ground
truth images) to eliminate the white border on all sides. Next,
we resize all the cropped images to the same size τ × τ (here
150×150). Finally, we compute the disparity score ξig between
the resized generated image ᾱi, i ∈ {ws, gp} and the resized
ground truth image ᾱg . Fig. 5 illustrates the steps.

First, we partition both the images ᾱi & ᾱg into grids with
grid size χj ×χj . We bitmap the grid partitioned image (say)
ᾱi by placing ρji (k, l) = {1, 0} depending on the presence of
the images inside each grid cell (k, l). Considering the cell
(k, l) of two bitmapped images ᾱi & ᾱg , we assign the cell-
wise hamming distance γjig(k, l) = 0 if ρji (k, l) = ρjg(k, l),
otherwise set γjig(k, l) = 1. Subsequently, we aggregate the

Fig. 5: Metric-based Framework for Quantifying Performance

distances of all the cells and compute the proportionate ham-
ming distance score ηjig =

∑λj

h=1

∑λj

l=1 γ
j
ig(k, l)/(λ

j × λj),
where λj × λj is the cell count in the image partitioned with
grid size χj × χj . We repeat the procedure for m different
grid sizes X = {χ1 × χ1, . . . , χj × χj , . . . , χm × χm} and
compute the proportionate hamming distance score for all
the grids X as {η1

ig, . . . , η
j
ig, . . . , η

m
ig}. Finally, eliminating

the bias of the grid size, we compute proportionate disparity
score between image ᾱi & ᾱg as ξig = 1

|X|
∑m
j=1 η

j
ig . In our

implementation, we consider m = 6, and the grid sizes are
10× 10, 15× 15, 20× 20, 30× 30, 40× 40,&50× 50.

VI. PERFORMANCE EVALUATION

If not otherwise mentioned, we consider maximum script-
height and writing speed as 1.5′′ and 3.5sec per character,
respectively, with the arm position at the writer’s toe-to-
shoulder height. Notably, we observed that the original hand-
writing (ground-truth) of an individual is always decipherable.
Consequently, the accuracy measure correctly captures the
decipherability of the generated transcripts.

Fig. 6: Ground Truth vs. WatchScribe-generated Words

A. Word Decipherability

Fig. 6 shows the visual impressions for the ground-truth
scribbles and WatchScribe-generated transcripts of a few rep-
resentative words from the English and the Bengali scripts.
Table I gives a complete analysis of the decipherability of
the WatchScribe-generated words. A perfect match indicates
that the volunteer has completely deciphered the generated
transcript (along with the case of the first character for English
words). We also see the percentage of longest common sub-
sequence (LCS) between the detected words and the ground-
truth word, as indicated in LCS match. For example, if the
word ‘Xenon’ is detected as ‘Venom’, then LCS match is
3/5. Additionally, we compute the accuracy by ignoring one
(Ignoring 1-char) and two (Ignoring 2-char) characters while
matching the detected word and the corresponding ground-
truth. Finally, for English words, we compute the accuracy by

TABLE I: Decipherability of WatchScribe-generated Words (L and ‘All’ indicate the number of characters in a word and the
overall performance across all words, respectively. Red numbers indicate the maximum accuracy within respective groups.)

Perfect LCS Ignore-case (English Only)Chance L ≤ 3 L = 4 L ≥ 5 All L ≤ 3 L = 4 L ≥ 5 All L ≤ 3 L = 4 L ≥ 5 All
First 72.78 67.45 66.40 69.37 86.67 84.37 79.50 83.93 85.42 89.58 83.33 86.11
Second 76.66 70.83 67.20 72.22 88.15 85.68 79.82 85.02 86.46 91.67 84.38 87.50

Ignoring-1-char Ignoring-2-charChance L ≤ 3 L = 4 L ≥ 5 All L = 3 L = 4 L ≥ 5 All
First 91.29 85.16 77.42 85.50 95.46 92.19 84.41 90.80
Second 91.85 85.94 78.23 86.19 95.46 92.19 84.41 90.80

TABLE II: Language-wise Decipherability of Words. Red numbers indicates maximum accuracy within respective groups.

Perfect LCS Ignoring-1-char Ignoring-2-char Ignore-caseChance Eng Ben Eng Ben Eng Ben Eng Ben Eng Ben
First 69.79 68.52 87.29 77.21 90.28 75.93 96.53 73.61 86.11 -
Second 73.61 69.44 88.70 77.67 91.32 75.93 96.53 73.61 87.50 -

ignoring the case of the first character (Ignoring case). From
the table, we observe that the perfect match accuracy is nearly
70%. Similar to the characters, we observe that the validators
got confused where the first character looks similar in both the
uppercase and the lowercase variations (e.g. ‘Was’ and ‘was’).
If we ignore the case for the English characters, we see that
the accuracy improves up to ∼87%. LCS and ignoring one or
two characters further improve the accuracy. Table II shows
the decipherability of WatchScribe-generated words for the
two languages. The decipherability of English words is better
than Bengali words, primarily because the Bengali words are
more cursive and hence opens more scopes for the confusion.
To explore how the cursiveness in the writing impacts the
performance of WatchScribe, we dig further with character
decipherability, as discussed next.

B. Character-level Evaluation

We consider three types of English and Bengali alphanu-
meric characters – (a) single micro-gesture closed-curve (e.g.
‘O’), (b) single micro-gesture open-curve (e.g. ‘C’), and
(c) multiple micro-gestures (e.g. ‘Y’). Fig. 7 gives a visual
comparison of the generated transcripts using WatchScribe and
GyroPen, along with the corresponding ground-truth (image of
the original handwriting captured from the stylus). Visually we
observe that the generated transcripts for the open-curve single
micro-gesture characters are very close to the ground-truth. For
the closed curve single micro-gesture characters, although the
generated transcripts are visually close to the ground-truth, the
curve does not completely close in the generated transcript.
As WatchScribe uses the angular displacement around the
x-axis to estimate the locus of the pen over the yz-plane
(Section III-C), even a small noise in the gyroscope reading
significantly impacts this approximation. Such error during the
locus generation gets visible for the closed-curve characters.
However, as we can see even visually, the error is less in
WatchScribe compared to GyroPen – fixing the reference frame
correctly (Section III-B) helps us to reduce this error. Finally,
we observe that the major improvement in WatchScribe in
comparison with GyroPen comes for the characters having
multiple micro-gestures (last row, Fig. 7). For such characters,

the PUPD micro-gesture detection module helps us eliminate
the locus of the pen, which is not a part of the original
character. Therefore, the generated transcript with WatchScribe
is closer to the ground-truth than the transcripts generated with
GyroPen.

To delve more in-depth, we consider all the alphanumerics
in the English alphabet set. Fig. 8 shows the average accuracy
of individual characters across all the volunteers who partic-
ipated in the data collection process. For this computation,
we consider the decipherability instances from the majority
(2/3rd) of the validators. We observe that the decipherability
of some characters is very low. To further explore the reason
behind the poor decipherability of these characters, we gener-
ate a heatmap, as shown in Fig. 9, where the rows correspond
to the ground-truth character, and the columns correspond to
the detected characters by the volunteers. Each entry (i, j)
in the heatmap indicates the fraction of instances when the
ground-truth character ci has been confused with (detected
as) another character cj . The diagonal line indicates the
complete decipherability. We observe four different scenarios
where the decipherability is poor. (i) Similar curves for
upper and lower case letters: (indicated through yellow
circles in the heatmap) There are characters in the English
alphabet set, where the curves are similar for an uppercase
and the corresponding lowercase letters (e.g. ‘O’/‘o’, ‘X’/‘x’).
The validators made mistakes in deciphering these characters.
We do not see this as a direct limitation of WatchScribe,
and evaluate this further with the metric-based evaluation, as
discussed later. (ii) Similar cursive scripts: (purple circle in
the heatmap): Some characters (e.g. ‘k’ and ‘R’) look similar
on cursive writing. As we have seen earlier, since WatchScribe
uses angular displacement to estimate the locus, it makes
the scripts a bit more cursive due to error introduced from
gyroscope measurement noise. Therefore, the decipherability
of these characters gets reduced. Nevertheless, the decipher-
ability level depends on the writing style. (iii) Issue with
vertical lines: (the black circle in the heatmap): Because of
the error introduced during angular displacement estimation,
the vertical lines produced by WatchScribe becomes a bit
cursive. Consequently, it reduces the decipherability of cer-

Fig. 7: Generated Scribbles on alphanu-
meric characters

Fig. 8: Performance of WatchScribe on all
English alphanumeric characters

Fig. 9: Individual Transcription
Performance

tain characters where the vertical lines’ alignment has minor
differences (e.g. ‘A’ and ‘H’). (iv) Issue with PUPD micro-
gestures: (pink circle in the heatmap) As WatchScribe uses
a complete unsupervised approach for PUPD micro-gesture
detection, sometimes we observe that the proposed method
can not completely eliminate the unnecessary micro-gestures.
Consequently, we see a slight curve at the beginning and/or
at the end of some strokes for a multi-stroke character, which
creates confusion among a few characters (e.g. ‘t’, ‘b’, ‘8’).

In summary, we observe that the median accuracy of char-
acter transcripts generated by WatchScribe is 66.67% for both
English and Bengali scripts. In contrast, the mean accuracy is
64.52% for English and 56.28% for Bengali, computed over
all the characters from both scripts. The interesting observation
from this analysis is that the accuracy of word-decipherability
is more than that of the character-decipherability. As discussed
in [23], the graphic design techniques differentiate legibility
(ease with which a symbol can be decoded) from readability
(ease with which a reader can understand words or sentences).
Interestingly, our evaluation of decipherability checks the leg-
ibility of individual characters generated by WatchScribe. On
the other hand, it measures the readability of the WatchScribe-
generated words. While legibility requires a near-accurate
representation of the symbols, readability inherently uses the
dictionary of words based on the language’s proficiency [24].
Therefore, a user might be able to decipher the complete word
even if she has not been able to decipher all the characters of
that word. Consequently, we observe that a ∼60% accuracy in
the character-decipherability can help achieve ∼70% accuracy
in the word-decipherability.

(a) Disparity (b) Decipherability

Fig. 10: Performance across Subjects

C. Performance Comparison with Baselines

Next, we proceed to evaluate how WatchScribe fares in
terms of both the decipherability and the disparity score, com-
pared to other baselines. Fig. 10a and Fig. 10b show the overall
disparity scores and the mean accuracy for decipherability,
respectively, across all the characters (over both English and
Bengali scripts) for individual subjects. We observe that the
disparity score with WatchScribe is ∼10% less than GyroPen,
on average. For some subjects (e.g. u1, u2, u6, & u7), the
disparity score is higher than others. A close inspection shows
that these subjects mostly uses block scripts for handwriting,
where the usage of straight lines is more prominent than
cursive scripts. As we have seen earlier, the straight lines
become a bit cursive at the transcriptions generated by Watch-
Scribe. Intuitively, the disparity between a straight line and the
corresponding cursive line is high based on the metric designed
in Section V-C2. Further, as we have seen earlier, the cursive
characters are the sources of confusion, so the mean accuracy
for decipherability gets reduced for these users.

VII. CONCLUSION

To the best of our knowledge, WatchScribe is the first of its
kind, which uses smartwatch data to reproduce real-time on-
device transcription of boardworks with zero bootstrapping.
From thorough testing over ten subjects, WatchScribe shows
promising results over a large pool of test cases, including 133
characters in total and 36 unique words each from the English
& Bengali languages. Compared to the existing approaches on
reproducing handwriting through smart devices, our method
uses a complete unsupervised approach and thus requires
zero bootstrapping. During the development of WatchScribe,
we observed that WatchScribe makes the straight lines a bit
cursive due to the error introduced during the estimation of the
angular displacement. The performance of WatchScribe can be
improved further if this error can be reduced. As a next step,
we target to incorporate these extensions over WatchScribe so
that even very complex, unorganized, and random scribbles
can be replayed over a virtual whiteboard with the help of a
smartwatch.

REFERENCES

[1] A. M. Reports, “Global smartwatch market size, market share, applica-
tion analysis, regional outlook, growth trends, key players, competitive
strategies and forecasts, 2018 to 2026,” January 2019.

[2] S. Shen, H. Wang, and R. Roy Choudhury, “I am a smartwatch and I
can track my user’s arm,” in Proceedings of the 14th ACM international
conference on Mobile systems, applications, and services, 2016, pp. 85–
96.

[3] C. Bi and G. Xing, “Real-time attitude and motion tracking for mobile
device in moving vehicle,” in Proceedings of the 16th ACM Conference
on Embedded Networked Sensor Systems, 2018, pp. 357–358.

[4] H. Zhou, Y. Gao, X. Song, W. Liu, W. Dong, and Y. Jiang, “Wearable-
based human-computer interaction with limbmotion,” in Proceedings of
the 16th ACM Conference on Embedded Networked Sensor Systems,
2018, pp. 339–340.

[5] C. Bi, J. Huang, G. Xing, L. Jiang, X. Liu, and M. Chen, “SafeWatch:
a wearable hand motion tracking system for improving driving safety,”
ACM Transactions on Cyber-Physical Systems, vol. 4, no. 1, pp. 1–21,
2019.

[6] G. Reyes, J. Wu, N. Juneja, M. Goldshtein, W. K. Edwards, G. D.
Abowd, and T. Starner, “SynchroWatch: One-handed synchronous smart-
watch gestures using correlation and magnetic sensing,” Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 1, no. 4, pp. 1–26, 2018.

[7] C. Xu, P. H. Pathak, and P. Mohapatra, “Finger-writing with smartwatch:
A case for finger and hand gesture recognition using smartwatch,” in
Proceedings of the 16th International Workshop on Mobile Computing
Systems and Applications, 2015, pp. 9–14.

[8] L. Ardüser, P. Bissig, P. Brandes, and R. Wattenhofer, “Recognizing
text using motion data from a smartwatch,” in Proceedings of IEEE
International Conference on Pervasive Computing and Communication
Workshops, 2016, pp. 1–6.

[9] X. Lin, Y. Chen, X.-W. Chang, X. Liu, and X. Wang, “SHOW: Smart
handwriting on watches,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 4, p. 151,
2018.

[10] R. Wijewickrama, A. Maiti, and M. Jadliwala, “deWristified: handwrit-
ing inference using wrist-based motion sensors revisited,” in Proceedings
of the 12th Conference on Security and Privacy in Wireless and Mobile
Networks, 2019, pp. 49–59.

[11] H. Jiang, “Motion Eavesdropper: Smartwatch-based handwriting recog-
nition using deep learning,” in Proceedings of ACM International
Conference on Multimodal Interaction, 2019, pp. 145–153.

[12] Q. Xia, F. Hong, Y. Feng, and Z. Guo, “MotionHacker: Motion sensor
based eavesdropping on handwriting via smartwatch,” in IEEE INFO-
COM Workshops, 2018, pp. 468–473.

[13] Y. Yin, L. Xie, T. Gu, Y. Lu, and S. Lu, “AirContour: Building contour-
based model for in-air writing gesture recognition,” ACM Transactions
on Sensor Networks, vol. 15, no. 4, p. 44, 2019.

[14] Q. Dai, J. Hou, P. Yang, X. Li, F. Wang, and X. Zhang, “The sound
of silence: end-to-end sign language recognition using smartwatch,” in
Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking, 2017, pp. 462–464.

[15] J. Hou, X.-Y. Li, P. Zhu, Z. Wang, Y. Wang, J. Qian, and P. Yang,
“Signspeaker: A real-time, high-precision smartwatch-based sign lan-
guage translator,” in Proceedings of the 25th International Conference
on Mobile Computing and Networking, 2019, pp. 1–15.

[16] T. Deselaers, D. Keysers, J. Hosang, and H. A. Rowley, “Gyropen:
Gyroscopes for pen-input with mobile phones,” IEEE Transactions on
Human-Machine Systems, vol. 45, no. 2, pp. 263–271, 2014.

[17] M. Pedley, “Tilt sensing using a three-axis accelerometer,” Freescale
semiconductor application note, vol. 1, pp. 2012–2013, 2013.

[18] S. Agrawal, I. Constandache, S. Gaonkar, R. Roy Choudhury, K. Caves,
and F. DeRuyter, “Using mobile phones to write in air,” in Proceedings
of the 9th international conference on Mobile systems, applications, and
services, 2011, pp. 15–28.

[19] G. Dissanayake, S. Sukkarieh, E. Nebot, and H. Durrant-Whyte, “The
aiding of a low-cost strapdown inertial measurement unit using vehicle
model constraints for land vehicle applications,” IEEE transactions on
robotics and automation, vol. 17, no. 5, pp. 731–747, 2001.

[20] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53–65, 1987.

[21] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the 30th ACM
symposium on Theory of computing, 1998, pp. 604–613.

[22] M. Astefanoaei, P. Cesaretti, P. Katsikouli, M. Goswami, and R. Sarkar,
“Multi-resolution sketches and locality sensitive hashing for fast trajec-
tory processing,” in Proceedings of the 26th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems,
2018, pp. 279–288.

[23] J. E. Sheedy, M. V. Subbaram, A. B. Zimmerman, and J. R. Hayes, “Text
legibility and the letter superiority effect,” Human factors, vol. 47, no. 4,
pp. 797–815, 2005.

[24] E. Qiao, F. Vinckier, M. Szwed, L. Naccache, R. Valabrègue, S. De-
haene, and L. Cohen, “Unconsciously deciphering handwriting: sublim-
inal invariance for handwritten words in the visual word form area,”
Neuroimage, vol. 49, no. 2, pp. 1786–1799, 2010.

