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ABSTRACT
Monitoring students’ engagement and understanding their learning
pace in a virtual classroom becomes challenging in the absence of
direct eye contact between the students and the instructor. Con-
tinuous monitoring of eye gaze and gaze gestures may produce
inaccurate outcomes when the students are allowed to do produc-
tive multitasking, such as taking notes or browsing relevant content.
This paper proposes Stungage – a software wrapper over existing
online meeting platforms to monitor students’ engagement in real-
time by utilizing the facial video feeds from the students and the
instructor coupled with a local on-device analysis of the presenta-
tion content. The crux of Stungage is to identify a few opportunistic
moments when the students should visually focus on the presen-
tation content if they can follow the lecture. We investigate these
instances and analyze the students’ visual, contextual, and cognitive
presence to assess their engagement during the virtual classroom
while not directly sharing the video captures of the participants and
their screens over the web. Our system achieves an overall F2-score
of 0.88 for detecting student engagement. Besides, we obtain 92
responses from the usability study with an average SU score of
74.18.
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1 INTRODUCTION
The pandemic has made virtual online classes a norm rather than
an exception. However, the online mode of classes has received
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several criticisms; one of the major criticisms being it lacks the eye-
contact between the teacher (or the instructor) and the students.
In a classroom, such eye contacts significantly help the instructor
gauge the students’ learning pace and understand whether the
students are engaged with the topic being taught. In the era of
pandemic, a large number of studies [2, 7, 23, 24, 34, 41, 54] have
highlighted this requirement. Consequently, several works have
utilized signals like video captured from the front camera [8, 21, 25]
or utilized specialized devices like smart glasses, thermal cameras,
eye-trackers, etc. [1, 22, 47, 54, 56] to capture the eye dynamics of
the students to analyze how they interact with the computer during
a live lecture. Intuitively, a solution involving such specialized
devices can not scale well for the masses, whereas a continuous eye
monitoring-based solution poses a major limitation as follows.

Interestingly, a virtual classroom opens up the scope for mul-
titasking [10, 12, 13, 32], where a student may perform several
other activities while still attending the classes online. These activ-
ities range from productive activities that support interaction with
the classroom during the live lecture (like taking notes, browsing
related concepts on the web, etc.) to the activities that negatively im-
pact the attentiveness towards the classroom (like browsing social
media pages, chatting over the phone, etc.). In both the above cases,
the eyes of a student might not be focused on the computer’s screen;
a method that solely analyzes eye dynamics to infer students’ en-
gagement may result in false positives when the student performs
productive multitasking. Understanding students’ attention in the
presence of multitasking is challenging, as a student might get in-
volved with such activities for a significant duration during a live
class [12]. Apart from that, gazing at the screen is not an essential
condition for getting involved in an online meeting [19, 20]. As
shown in several recent studies, a student might still get actively
involved in a virtual classroom even if they minimally gaze at the
screen [9, 16, 18, 42]. Therefore, we argue that continuous tracking
of eye gazes does not provide a reliable source of information for
marking a student inattentive in a virtual classroom.

Consequently, we ask the following question in this paper: how
can we quantify a participants’ engagement while allowing free move-
ments and other activities that promote positivemultitasking? Finding
a generic solution for this problem is challenging, and the pedagogy
changes depending on multiple factors, like the level of teaching
(K-12 or University), subjects and topic, socio-cultural aspects, etc.
This paper focuses on a particular case when the teacher utilizes a
presentation or slides to explain the concept. The core idea is that
a presentation with textual and animated slides often triggers in-
termediate cues when the meeting participants are tempted to look
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at the screen if they are attentive. We call these cues the Fixation
Target Events which include a figure or a diagram, animations, high-
lighted texts, etc. Even with this specific setup, multiple technical
challenges need to be addressed. First, the processing needs to be
in real-time on the video feed over the meeting platform. Second, it
might happen that the student is browsing his social media profile
during the virtual classroom. In this case, his eye gaze on the screen
will also be captured during the fixation target events, resulting in
spurious false positives. The platform needs to analyze whether
the gaze is on the presentation slide or on his social media profile.
Third, a naive approach of understanding whether a student fo-
cuses on the same content that the instructor is presenting would
be to compare the screen of the student with that of the instructor.
However, processing the video frames from the instructor as well
as all the students and comparing them in real-time is challenging.
Further, the instructor and the student might use different devices
having different screen sizes; therefore, a direct comparison might
be difficult. It can also be noted that a meeting application should
record the minimum information about the participant’s screen
such that the privacy of the participants is preserved.

1.1 Our Contributions
Owing to these challenges and limitations of the prior works, we
propose Stungage – a student engagement detection system that
aims to capture both the students and the instructor’s video feed
along with the lecture presentation to infer the involvement of
the students in the virtual classroom (Figure 1). Stungage works as
a software wrapper on top of an online meeting platform where
both the instructor’s and the students’ video feeds are processed
locally. The computed information is shared with the instructor for
generating an involvement score for each of the students. The core
contributions of this paper are as follows.
(1) Detection of fixation target events:The fundamental premise
of our work is that even if a student involves in multitasking, the
attentive one fixates on the fixation target points such as animation,
image, and highlighted short text content. Accordingly, Stungage
extracts the target points from the lecture video by detecting the
foreground object movement followed by a Spatio-temporal bound
measure.
(2) Analyzing student’s understandability: For understanding
the students learning pace, Stungage uses a cascade-like phenom-
enon while responding to three questions – (1) are you inside the
online class?, which detects the visual presence of the students dur-
ing the fixation target events, (2) are you looking at the presentation?,
which detects the contextual presence of the students by mapping
the presence of the instructor and student, and (3) are you following
the presentation? , which finally detects the cognitive presence of
the students by comparing the instructor and the student’s gazing
energy at the screen. We capture the visual presence by frontal
face detection mechanism to segregate the activities like watching
mobile, browsing Facebook, sleeping, etc., from following the lec-
ture presentation by developing a novel method of extracting the
spectral properties of the gazing histogram.
(3) Analyzing teaching performance: Stungage computes the
instructor’s presentation score as a by-product of the system. We
count the instructor’s visual presence during the fixation target

Figure 1: We propose Stungage to detect students’ engage-
ment in the virtual classroom using the pervasive webcam.
Our method locally analyses both the students and the in-
structor’s video feed alongwith the lecture presentation and
finally compares at instructor’s end to infer the engagement.

event, and finally, upon aggregation over a time window, the pre-
sentation score is generated.
(4) Prototype deployment & evaluation:We have developed a
prototype of Stungage and tested it over two different studies – (i)
a pilot study both in lab and in-the-wild set up to investigate the
system performance over the existing systems, (ii) a usability study
to test the usability of the system. We have recruited 30 participants
belonging to the age group of 24-44 years to perform both the pilot
experiments. We achieve an overall F2-score of 0.88 for detecting
student engagement. On contrary, we obtain 92 responses from the
usability study with an average SU score of 74.18.

2 RELATEDWORK
Existing literature primarily focuses on three different strategies
for detecting student engagement in a classroom – (1) questioning-
based, (2) dedicated device-based, and (3) commonly off-the-shelf
device-based approach.
Questioning-based approach: Similar to the physical classroom
system, for understanding the students’ learning space, the question-
answering interaction-based solution [35, 40, 44, 55, 58] is one of
the traditional ways in the virtual classroom system. In [44], Shin
et al. studied the instructor and the learner perceptions using the
in-video prompting questionnaire. Besides, Price et al. [40] applied
a comparison mechanism for detecting the engagement of the stu-
dents where the instructor’s solution was provided, and they were
prompted to compare their solution with the instructor’s one. In
separate work, Yeckehzaare et al. [58] used the concept of question
generation and linking by applying a question map for engaging the
students. In these cases, the students proactively participate in the
different forms of questionnaires to establish their understanding.
Apart from the questionnaire, the voice and text-based interaction
[55] also plays a significant role in improving learning in online
education.
Dedicated device-based approach: To address the problem of
the student involvement in the virtual classroom, several stud-
ies [1, 3, 4, 14, 15, 22, 26–28, 31, 39, 43, 45, 47–49, 51, 56, 57] have
explored the use of dedicated devices for capturing either the be-
havioral or the physiological signals of the students. In one of the
earliest studies, Sharma et. al. [43] tried to capture the students’
lecture navigation pattern by displaying the instructor’s gaze. The
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researcher observed that showing the gaze made the presentation
easier for the students following the lecture. Afterwards, a few
works [14, 15, 27, 47] captured the eye gaze signal through the eye
tracker for collaborative reading, writing, problem-solving, and
learning. Later on, the authors in [28, 49] explored acoustic signal
along with the eye gaze for improving the remote collaborative per-
formance. While eye gaze monitoring by eye tracker is a promising
technique, the cost and availability of the tracker to all the students
is a major obstacle. To address these issues, different forms of other
sensing such as thermal imaging [1, 48], mouse & keyboard track-
ing [3], and PPG [56] are used to capture the physiological signal
to infer the attentiveness during the lecture session. Despite the
benefits of physiological sensing, it is commonly observed that the
techniques require the continuous intervention of the attendees,
which is typically not feasible during the lecture session as students
can forget to track the signal. Furthermore, the dedicated wearable
devices need special attention towards installing and demonstrating
the devices, which is not a preferable resolution for a large class.
Commonly off-the-shelf device-based approach: To suppress
the shortcomings of the dedicated invasive devices used in the
virtual classroom, the pervasive webcams are considered a suit-
able alternative for capturing the attendees’ gaze signature. For
instance, Whitehill et al. [54] studied the student engagement in
the context of their facial expression. In the same line, authors
in [2, 34, 46, 50] applied various emotional attributes such as sat-
isfied, confused, bored, and anxiety for detecting the involvement
of the students in the virtual classroom. While keeping the emo-
tion detection in the context of engagement is a promising way;
however, the frontal screen with the lecture content is one of the
mandate criteria for processing the data. The attendee can look
at different content and give similar expressions. Additionally, in
the absence of the instructor’s expression, the attendees can give
different expressions irrespective of engaged or non-engaged. To
address these limitations, some studies explores the gaze-based
visual attention [7, 8, 25, 29] for finding the attentiveness of the
attendees. In [8], Bace et al. quantified the visual attention by check-
ing whether the attendee was looking at the frontal screen. In [5, 6],
the authors further extended the work by comparing the screen
object with the gaze projection on the screen. The research detected
the pursuit interaction but also acknowledged that the objects on
the screen were known and the screen was large. Kar et al. [25]
compared the attendee’s gaze gesture with the instructor’s one
to conclude the participants’ attentiveness. However, all of these
works consider continuous monitoring of students’ gaze, which is
impractical in multitasking and thus can yield severe false positives.

Similar to the state-of-the-art, our work also uses pervasive
webcams to monitor visual, contextual, and cognitive attention but
explores all the attentional behavior simultaneously along with the
consideration of discretemonitoring. Our research goal is to identify
the different characteristics of the various attentional behavior and
develop a system that shows the students’ engagement in a real-
time virtual classroom while allowing the student to multitask.

3 THE DESIGN OF STUNGAGE: CORE IDEA
AND BROAD SYSTEM OVERVIEW

Stungage infers the student involvement and teaching performance
from the Spatio-temporal analysis of the student and the instructor
video feeds and the lecture content. The system runs on the students’
device that captures and processes the students’ video feed at their
end to produce the meta-data. The meta-data are compared at the
instructor’s device to detect the involvement of the students in the
online lecture session. We start with a preparatory study that helps
us understand the requirements for developing such as system.

3.1 Preparatory Study
For establishing the requirement of detection of student engage-
ment during online teaching, we have conducted an online anony-
mous survey1 over 466 teachers and students from different loca-
tions across the globe. The participants are from different desig-
nations, including undergrad students (51.5%), masters students
(12.7%), research scholar (18.8%), faculty (10.3%), and so on. We
found that most of our studied population (87.4%) admit that on-
line classes lose the charm of the physical classroom. Presentation
slide-based teaching is one of the popular teaching modes in the
virtual classroom, where animation, image, and highlighted text are
the preferable presentation content. Thereby, the attentive students
fixate on those contents. Asking about the video-sharing reveals
that the participants (65.6%) are comfortable sharing their videos
when the audience size is small (within 20). This motivates us to
work with video extracted information sharing. We observe that
65.3% of the participants strongly believe that multitasking is a
common tendency during the online session, which introduces the
need for the discrete interval local processing of video extracted
information-sharing schemes2. This discrete computation involves
the opportunistic events where the student fixates on the presen-
tation. We process these ideas to develop our student engagement
detection system.

3.2 Design Idea
The overall idea of the system is to identify the opportunistic events
where the attentive student must fixate on the screen and analyze
the lecture context and gaze movement during those opportunis-
tic events. We call these events the fixation target events. Figure
2 shows the overall framework of the student engagement detec-
tion system, which is primarily composed of two modules – (a)
Fixation Target Extraction, and (b) Student Engagement Detection.
The first module analyses the presentation video content from the
lecture presentation to extract the fixation targets. The final mod-
ule studies the presenter and the students’ video feed during the
fixation target events to detect the student engagement during
the online presentation-based teaching. Additionally, the final out-
come includes the presenter score as a by-product of the system
for characterizing the instructor’s performance in the session.

3.2.1 Fixation Target Extraction. This module runs at both the
instructor and the students’ end and excerpts the fixation target
points from the presentation video. This involves two steps.
1 https://lnkd.in/e3T9F_d 2 Due to the interest of space, we exclude the complete
human study. However, the readers can check the details of this study through this
link – https://github.com/Stungage/PreparatoryStudy.

https://lnkd.in/e3T9F_d
https://github.com/Stungage/PreparatoryStudy


UMAP ’22, July 4–7, 2022, Barcelona, Spain Snigdha Das, Sandip Chakraborty, Bivas Mitra

Figure 2: Student engagement detection framework mod-
ules – Fixation Target Extraction and Student Engagement
Detection.GI ,GS1,GS2: gazing energy of instructor, student 1
& student 2, respectively.

(a) Foreground Video Extraction: Stungage first identifies the
object movements within the presentation slide. Without loss of
generality, we assume that each presentation is made of a single
template. Thus, the template represents the background of the en-
tire presentation video feed and the variable content on top of
the template appears as the foreground of the presentation video.
Therefore, for filtering out the invariant component from the pre-
sentation video, Stungage applies the existing Gaussian mixture
model-based background subtraction mechanism [60]. However,
due to the imprecise learning of the Gaussian parameters, the ex-
tracted foreground pixels incorporate scattered spots. Stungage
relies on the median filtering on the foreground video for erasing
the salt pepper-like scatter spots.
(b) Fixation Target Detection: This module considers the filtered
foreground pixels to precisely detect the opportunistic events, called
fixation target events. The key idea is to identify the portions of
the lecture content where the attentive student fixates. Among
the different presentation lecture video content, our study shows
that animation, image, and short highlighted text give additional
attention to the audience. Furthermore, along with the specified
presentation content, the pointer movement creates attention to-
wards the audience. Stungage detects these events by applying a
Spatio-temporal threshold mechanism. The spatial threshold is ap-
plied to eliminate the text-heavy presentation content whereas the
temporal threshold removes the short non-resistant presentation
content. Specifically, an event is marked as a fixation target event
when the foreground frame pixel count is within the spacial thresh-
olds δs1 and δs2 and that spacial constraint persists at least for δt
number of frames where δt is the temporal threshold. Any violation
of the Spatio-temporal threshold marks the foreground selection as
the non-fixation target event.

3.2.2 Student Engagement Detection. Partially, this module exe-
cutes on both the instructor and the students’ sides, and the rest
runs on the instructor side to generate the student engagement
scores during the fixation target events. This module works in a
cascade-like phenomenon while responding to three questions –
(1) Are you inside the online class?, detecting the visual presence of
the students during the fixation target events, (2) Are you looking at
the presentation?, detecting the contextual existence of the students
by mapping the presence of the instructor and student, and (3) Are

Figure 3: Schematic depiction of Student Engagement Detec-
tion mechanism flow

you following the presentation?, detecting the cognitive existence of
the students by comparing the instructor and the student’s gazing
energy (detail in Section 4) at the screen. The next section discussed
these three steps in detail.

4 STUDENT ENGAGEMENT DETECTION
The student engagement module works on top of the fixation target
extraction module to determine the students’ involvement in the
online class as well as the instructor’s presentation performance
during the online session. As we mentioned earlier, while detecting
student engagement, this module responds to three questions in a
cascade-line phenomenon (Figure 3), where each question module
is sequentially attached. The initial module eliminates a significant
number of non-engaged students based on the visual absence. Sub-
sequent modules successively eliminate the non-engaged students
with a contextual and cognitive value different from the instructor.

4.1 Visual Presence: Are you inside the online
class?

For detecting the visual presence of the student in the online class-
room, Stungage first checks whether the student’s frontal face is
detected during the fixation target events. Stungage detects the
frontal face from the video feed3 of the instructor and students
using an existing approach [52] based on cascaded classifiers with
Haar-like features and AdaBoost. This analysis is done one the
respective devices of the students and the instructor and no data is
communicated over the Internet.

4.2 Contextual Presence: Are you looking at
the lecture?

To detect the contextual presence of the student in the class, we
consider that the student visually present in the class must fixate
at the presentation screen during the fixation events. This module
compares the contexts of the instructor and the students in terms
of the screen content. Although the student may perform different
tasks during the non-fixation periods, the attentive one switches
to the instructor’s context during the starting of a fixation event.
Therefore, for each fixation target event, the first n frames from
3 We acknowledge that capturing local video feeds may cause additional stress to the
participants.
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the screen capture4 are chosen for making the comparison of the
context. The selection of only a few initial frames from the fixation
event reduces the number of comparison operations; thus, it reduces
the system complexity. Considering a screen capture frame as an
image, a pixel-based histogram is derived for both instructor and
student-sided screens. For the student-sided presentation video,
the nearby fixation target event of the instructor’s presentation
video is chosen. In the absence of such an event in the student-sided
presentation video, the instructor’s fixation target event is used.
Even if both-sided presentation videos are the same, we do not
observe an exact match due to the device differences. Therefore, the
system scales down the histogram size to assign the nearby pixels
in a single bin. Then, the system compares the histograms using
the chi-square metric and selects the minimum distance among
the n comparisons. Finally, the student’s presence in the lecture
is determined depending on the distance value lying within the
threshold δh .

4.3 Cognitive Presence: Are you following the
lecture?

Figure 4: 68 facial
landmarks, candi-
date points for 3D
points estimation
(red)

In this module, the system detects the
cognitive presence of the students by
checking whether the instructor and the
student are following the presentation
lecture in a similar way. For this pur-
pose, Stungage first detects the facial
landmarks from the detected faces of
the video frames following the hourglass
model [17]. From the facial region of in-
terest, 68 facial landmarks (shown in Fig-
ure 4) are generated as an outcome of
the hourglass model. We next detect the
gazing projection based on these facial

landmarks, as follows.

4.3.1 Gazing Projection Estimation. This submodule estimates the
position where the student gaze is projecting towards the front
screen. However, due to the binocular vision problem, completely
relying on the gaze for the projection is not legitimate. In the line,
the eye corners move towards the direction of the eyeball. Therefore,
Stungage uses facial landmarks for estimating the fixate position
on the screen. In this approach, first, the 3D points in the world
coordinate system for the 2D facial landmarks are determined by
following an existing state-of-art mechanism [53]. Stungage selects
six landmarks (2 eye corners – 37, 46; 2 lip corners – 49, 55; 1 nose
end – 31; and 1 thin end – 9; red points in Figure 4) points out of 68
facial landmarks as the candidate points for 3D points estimation.
Further, the system follows Zhang et al. [59] for calibrating the cam-
era parameters. Next, the pose of the calibrated camera is predicted
from the current detected 2D landmarks, and the model populated
3D points in the world coordinate system by applying a direct linear
transform solution followed by Levenberg Marquardt optimization.
Without loss of generality, Stungage considers the center of the

4 A screen capture records the device’s (computer or laptop) screen. It can be noted that
because of the privacy concern, we do not share the screen capture of one participant
with another; instead, we convert it into pixel histograms which are then compared
between the instructor and the students.

face (nose endpoint), the candidate point for the gazing projection.
Finally, the system determines the projection of the nose end to
the 2D screen using the current pose of the camera following the
Pinhole camera model. It can be noted this this computation is done
on individual devices.

4.3.2 Gazing Energy Similarity. From the projection point, our final
task is to identify the students who are following the presentation.
Towards this goal, the student’s estimated projected points on the
screen are compared with those of the instructor. For this purpose,
the gazing energy of the students is shared with the instructor, and
the computation is done over instructor’s device. While attend-
ing the lecture in the online mode, the gaze movement is highly
dominated by the horizontal movement [30]. Therefore, Stungage
excludes the vertical axis data for the next processing. Further-
more, as the projection value depends on various parameters like
the camera calibration, and 3D-2D mapping model, the individual
projection value can be erroneous. For eliminating the impact of
the error, the system populates per second projection strength by
computing the projection value-based gazing energy over the win-
dow of one second. The gazing energy is calculated by taking the
sum of the square of the horizontal projection value over a window
of one second. For engaged students, both the instructor and the
student look at a similar object in the presentation. Therefore, the
gazing energy must be similar for both of them. Hence, the system
compares the set of gazing energy within a single fixation target
event for both the instructor and the student using the Student
t-test to interpret whether both the samples have a similar mean
value. Our null hypothesis is that the mean of the gazing energy
of the student and the instructor are the same. The system reports
non-engagement of the student depending on the p −value < .001.

5 SYSTEM LAYOUT DESIGN
Stungage renders the online classroom involvement status in two
phases. In the first phase, it computes the involvement score for
both the instructor and the students. The final phase takes charge
of the score generation time detection. The details of the proposed
visualizer system are discussed as follows.

5.1 Involvement Score Computation
The visualizer shows two types of involvement score – (i) a cur-
rent score, and (ii) an aggregate score. The current score is com-
puted based on the individual involved in the current segment of
the presentation whereas the aggregated score shows the overall
involvement in the segment of the presentation. Moreover, the
system displays the overall involvement in all the prior segments.
(1) Student Engagement Score: Our system preserves a positive
fixation target event count Fs for each student s to count the fix-
ation events where the students are engaged. The fixation target
event count, Fs is incremented by one if the cognitive presence
of the student is detected in that fixation event. Therefore, for a
segment of t unit of time, if there exists f fixation target events,
then our system computes the current student engagement score
as Cs = (Fs/f ) × 100%. While counting the fixation target events,
the system only considers the events where the instructor is con-
textually present. The aggregative score is calculated by taking
the average of the current score, Cs of all the students present in
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the online class. (2) Presentation Score: Similar to the student
engagement score, Stungage computes the instructor’s presenta-
tion score as a by-product of the system. Analogous to the student,
for the instructor, the system maintains a positive fixation target
event count Fi to count the fixation events where the instructor is
involved. But, the fixation target event count, Fi is incremented by
one if the contextual presence of the instructor is detected in that
fixation event. Therefore, for t unit time segment, if there presents
f fixation target events, the instructor’s current presentation score
is calculated as Ci = (Fi/f ) × 100%.

5.2 Involvement Score Generation Time
Detection

The visualizer plays a significant role in the involvement score gen-
eration time detection. It provides two alternatives to the instructor
– (i) automatic selection: slide-transition based time segment selec-
tion, and (ii) manual selection: fixed time-slice based time segment
selection. The details follow.

5.2.1 Slide Transition-based Time Segment Selection. For automati-
cally selecting the involvement score generation interval, our sys-
tem depends on the slide transition in the presentation video. This
selection process not only detects the slide transition but also elim-
inate the insignificant slide contents such as starting slide, ending
slide, and title slide. Typically, the slide numbers are present in all
the presentation slides except for the insignificant ones. Therefore,
the system first locates the slide number position in the slide from
the usual slide number positions – upper right corner, lower right
corner, and middle bottom of the slide. During the slide transition,
the pixel values of either of the three portions reasonably change
and the rest two remain the same. For detecting the slide transition,
the system applies a 30 × 50 pixels grid on the three pre-defined
positions of each frame of the video for cropping the portion con-
taining the slide number. The starting slide commonly with no slide
number is treated as the initial template for matching the subse-
quent slides. Once retrieved the cropped frame portions, the system
converts that into a gray-scale image and compares the cropped
image with the respective cropped image of the subsequent frame
using the mean squared error metric. During the slide transition,
only the comparison of the cropped images with slide numbers
produces a high difference value whereas the rest of the portion
comparison in transition or non-transition comparison generates
almost zero difference value. Hence, by applying a simple threshold
value, δ the system slices the presentation video. Once a slide tran-
sition is detected, the system further compares the frame with the
initial template with no slide number using the mean square error
metric. If the error value is close to zero, the system marks it as
an insignificant slide and eliminates the slide portions for further
processing. Otherwise, the video segment belonging to a significant
slide is chosen for a segment of involvement score calculation.

5.2.2 Time Slice-based Time Segment Selection. The presence of
the slide number in the presentation is not mandatory for an aca-
demic presentation. This leads us to open up a manual solution for
selecting the involvement score generation interval. In the manual
process, the system slices the presentation video based on a fixed

time interval (3, 5, or 15 minutes) and computes the involvement
score for that time segment.

6 LAB-SCALE EVALUATION
For understanding the effectiveness of Stungage, we first conducted
a lab-scale study. The detail follows.

6.1 Evaluation Methodology
Analogous to a typical classroom, the participants of the experi-
ments are selected from a similar academic background. Each time,
one participant performs the instructor’s role, whereas the rest play
the students’ role. The instructors voluntarily choose the presenta-
tion topics. We instruct them to present content with animation,
image, and highlighted text. They are open to using any presen-
tation template. The experiments are conducted using the Google
Meet platform where, both the instructor and the students use a
dedicated desktop computer with a Logitech webcam c270 mounted
on top of the monitor. The participants can sit at 40-60cm from the
monitor under normal lighting conditions.

6.1.1 User Details. 13 different participants volunteered in the lab-
scaled experiment for a duration of 15 minutes each. During the
experiment, the students are instructed to perform four different at-
tentive and non-attentive behaviors – (a) completely following the
presentation, (b) reading an article on a different tab, (c) watching a
video on a different tab, and (d) looking at the mobile. Except for the
presentation, there was no restriction on the article or video con-
tent selection. Before conducting the experiments, a self-reported
communication competence form is shared among the participants.
The form computes the self-reported communication competence
score as per the Self-Perceived Communication Competence Scale
(SPCCS) [33] for understanding the self-reported competence over
a variety of communication contexts. The instructors are chosen
depending on either completely confident or fairly confident one.

6.1.2 Baselines. For estimating the efficacy of Stungage, we com-
pare it using metric-based system performance analysis under lab-
scale experiments. Bace et al. [8] developed a visual attention de-
tection mechanism for the mobile interaction. In this approach, the
attention or the engagement is detected depending on whether the
user is continuously looking at the front screen. For marking a
participant as attentive, we check whether the user is looking at
the screen for more than 50% of the time of the class.

6.1.3 Ground Truth Generation. Engagement is a subjective mea-
sure. Therefore, generating the ground truth information for evalu-
ating the system is a difficult task. For ground truth annotation, we
have asked both the instructor and the students to capture the facial
and the presentation videos using the OBS5 platform. We mark the
participant as engaged if the presentation video is opened and the
participant is looking at the screen. Otherwise, the participant is
marked as non-engaged. We continue the annotation for each of
the time segments of the videos. In case of a mixed behavior, we
mark the participant depending on the majority behavior during
that time segment.

5 https://obsproject.com/
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6.1.4 Evaluation Mechanism. We select Fβ -score for computing
the efficacy of the system with unbalanced set of engaged and
non-engaged pair. Furthermore, detecting a non-engaged student
is important for student’s understandability. Therefore, we have
calculated specificity and negative predictive value for prioritiz-
ing the non-engaged detection. Specificity indicates the detected
non-engaged participants by the system out of all non-engaged
participants in the collected sample. In contrast, a negative pre-
dictive value indicates the detected non-engaged participants out
of all detected non-engaged participants. Finally, we compute the
Fβ -score as the weighted harmonic mean of the specificity and
the negative predictive value, where β = 2. Thus, Fβ = (1 +

β2)
negative predictive value×specificity

β 2×negative predictive value+specificity .

6.2 Results and Evaluation
The lab-scale study gives an overall analysis of Stungage in com-
parison with the state-of-the-art. It further provides insight into
the participants’ specific performance.

6.2.1 Baseline Comparison: Stungage detects student engagement
depending on the statistically significant probability value. For an-
alyzing the system’s efficacy in detail, we compare Stungage with
the continuous monitoring-based scheme described in [8]. Figure
5a shows a comparison between Stungage and the baseline. From a
teacher’s perspective, identifying non-attentive students is more
relevant. Therefore, we use three metrics – specificity, negative pre-
dictive value, and F2-score for assessing the system performances.
We observe that the F2-score of Stungage is better than the base-
line scheme under the lab-scale condition (Figure 5a). Although
the negative predictive value is closer for both the methods, the
specificity is much improved for Stungage. Even though the base-
line captures the non-attentive cases (resulting in high negative
predictive value), it also results in high false-positive detection (low
specificity). The high false-positive cases mainly occur when the
participant performs other activities on a different tab, keeping the
face in front of the screen.

6.2.2 User-wise Performance. For analyzing the system perfor-
mance at the participants’ level, we study the individual’s per-
formance in four different attentive and non-attentive behaviors.
Figure 5b shows the F2-score for individual participants while per-
forming all four different behaviors using Stungage and baseline
method. The figure illustrates that except for the participants u04,
u06, u09, and u10, the individual F2-score of Stungage is at least
0.9, whereas that of baseline method is 0.38. Although the non-
attentive behaviors like video watching and mobile searching are
captured accurately for the participants u04, u06, u09, and u10, our
system gets confused when a student reads some article on the
computer screen. Indeed, such behavior is expected as the system
does not explicitly differentiate between reading articles relevant
to the class versus reading irrelevant articles (like a newspaper) on
the computer screen.

6.3 Ablation Study
We perform an ablation study where we continuously compute
the students’ engagement by suppressing the fixation target ex-
traction module. Figure 5c shows the system performance under

both the schemes – Stungage and continuous tracking without fixa-
tion target extraction. Irrespective of the metric value measure, the
continuous tracking scheme fails to reach the performance of the
complete model. The failure occurs mainly during the attentive in-
stances when the participant takes note while attending the virtual
class. Therefore, this ablation study confirms the importance of the
fixation target extraction module.

6.4 Impact of Different Tasks and Design Setup
The types of co-tasks during multitasking play a significant role in
the engagement computation as the characteristics of the student’s
presence in an online class highly depend on the co-task. Figure
5d shows the impact of different performing co-tasks – (a) reading
articles, (b) watching a video, and (c) looking at a mobile, during the
class, on the system performance. Except for the first one, the rests
are pretty different from attending a lecture. Therefore, the last two
tasks get majorly excluded using the contextual and visual presence
module, respectively, resulting in a high F2-score of the system.
On the other side, the detection of the student’s engagement while
reading an article is merely symmetrical with attending the class,
as both involve looking at a particular location of the screen for
a significant duration. Even though the gazing projection-based
cognitive computation for excluding the first task causes to generate
the false positive instances, we obtain the median F2-score of 0.54.

Besides analyzing the module-centric impact, we further study
the system performance from the design layout perspective in terms
of score computation and score generation time. We observe that
although the predicted score varies marginally across the partic-
ipants (Figure 6a), the predicted score of 67% participants differs
from the actual at most by 12.5(%), whereas the exact match in
terms of the score is found for 25% of the participants. The rest
of 33% participants get a score to differ by 25(%) due to the false
positive instances caused for the article reading. For analyzing the
system behavior with a varying score generation time, both auto-
matic (slide-transition based time segment selection) and manual
(5 minutes time-slice based time segment selection) time selection
schemes perform almost equally (Figure 6b). Moreover, as the en-
gagement is detected based on the statistically significant test, the
overall engagement score is not the aggregation of the individual
instances. However, we find that the system performance of the
individual instances for both automatic (blue line) and manual (red
line) are close to the overall one (green line). Similar to the student’s
engagement score, Stungage generates the instructor’s presentation
score with a detection error margin of 2(%).

6.5 Running Time
For analyzing the computational cost during the system execution,
we have arranged a short lecture session of 116 seconds duration
with a single instructor and student. The presentation contains three
fixation target events. Figure 6c shows the memory consumption
with time for different modules of the system. The overall system
takes 63 seconds with a maximum memory usage of 1520MB to
calculate the student engagement. Specifically, the fixation target
extraction and the cognitive presence modules execute in 38 and
18 seconds with a maximum memory usage of 1520 and 671 MB,
respectively. The computational cost is justifiable as the fixation
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(a) (b) (c) (d)

Figure 5: (a) System performance in lab-scale, (b) Participant wise system performance (pink line represents the difference in
F2-score between Stungage and baseline), (c) Impact of the Fixation Target Extraction, (d) Different task-wise system perfor-
mance

(a) (b)
(c)

(d)

Figure 6: System performance: (a) participant wise (pink line represents the difference in engagement score between Stungage
and baseline), (b) lecture time wise, (c) computational cost, (d) in-the-wild

target extractionmodule executes the complete set of frames to find
out the fixation events. In this arrangement, on average Stungage
takes 0.018 second to process each video frame with a per-second
frame rate of 30.

7 IN-THE-WILD EVALUATION
This section analyzes Stungage over an in-the-wild setup. Like the
lab-scale setup, we performed in-the-wild experiments where the
participants could use their personal devices to join the virtual
classroom. We obtained the institutes’ ethical committee approval
for involving the students (voluntarily) in the data collection pro-
cedure for these experiments. The data have been collected over
regular online classes in a university set up during the pandemic
period, where the students and the instructors volunteered in the
data collection procedure. We do not impose any restrictions on the
sitting pattern, lighting condition, etc., to the participants during
the class. 7 instructors are chosen from 23 participants6 depending
on either completely confident or reasonably confident one follow-
ing SPCCS [33]. The experiments are conducted under 12 different
virtual classrooms with a total of 13 hours (minimum duration: 30
6 The participants have similar face color. Analysing the system with different face
colored is a good future direction of the work.

minutes, maximum duration: 2 hours). On average, 8 students from
the classes have participated in these experiments. We have com-
pared Stungage using the survey-based system design analysis to
estimate the design efficacy. Three different layouts are designed
based on the existing online classroom platform. (i) Students’ static
image view: This is the default layout, where the instructor can
see the lecture video along with the static images of the limited
set of students. This layout allows us to compare our system in no
video and no feedback scenarios. (ii) Limited set student’ video view:
This is another default layout in online meeting platforms, where
the instructor can see the lecture video along with a few randomly
chosen students’ video feeds. Note that the complete student view
is not present. This layout permits us to compare our system in
a limited set of student videos. (iii) All students’ engagement view
(Stungage): In this layout, the instructor sees the lecture video and
all the students’ engagement statistics. The engagement stats view
is initially empty and shown after the fixation target encounter. The
ground truth is generated in a similar way as that of the controlled
setup (Section 6.1.3). Besides the metric-based analysis, these exper-
iments were evaluated using a set of surveys consisting of system
evaluation and student understandability. Once the class is over,
three different layouts are shared with the instructor, and for each
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layout, they were asked to fill up (1) system evaluation survey
[36, 37] that captures the instructor’s assessment on the system,
and (2) student understandability survey [36, 38] that captures
instructor’s experience with the view. We perform Paired Wilcoxon
signed-rank tests with correction on all the survey questions to un-
derstand the differences in the survey responses across the different
layouts.

Here, besides the metric-based evaluation, we focus on the sys-
tem behavior study under the in-the-wild setup condition and ana-
lyze the impact of student understandability. Figure 6d shows that
similar to the controlled setup study, the F2-score of our system
is better than the baseline approach. While the baseline method
detects the non-attentive cases (resulting in high negative predic-
tive value), it also has high false-positive detection (low specificity).
On the other side, Table 1 shows the average responses for the
questions focuses on the evaluation of the platform and the un-
derstandability of the student by the instructor as well as well-
accustomed participants7, respectively. Except for the students’
privacy, Stungage layout is rated significantly higher than both the
state-of-the-art systems (Lecture with limited set of student’s view
and Lecture with students’ static image view) while studying the
platform evaluation. A detailed analysis using Paired Wilcoxon
signed-rank test reveals that in terms of students’ privacy, our
system is rated higher than Lecture with a limited set of student’s
view (w = 5.5,p = .009). Although no significant differences are
observed in terms of system help, satisfaction, and future usabil-
ity during system evaluation study, our system is rated higher
than the other two layouts (Limited set of student’s view and Stu-
dents’ static image view) in terms of student understandability
(w = 3.0,p = .005;w = 0.0,p = .002) and presentation perfor-
mance awareness (w = 3.0,p = .004;w = 0.0,p = .001). In terms of
personal connection and students’ response chances, Stungage is
also rated higher than the Lecture with students’ static image view
(w = 0.0,p = .009;w = 0.0,p = .004), respectively.

8 USABILITY STUDY
For the usability study, we have created a detailed demo8 of Stun-
gage containing the system running steps and then made it publicly
available along with the platform. The users were free to check
the system and provide their feedback through a Google form. The
feedback form consists of 10 questions from the System Usability
Scale [11] where the participants need to rate the system on a scale
of 1 (strongly disagree) to 5 (strongly agree). The details of this
questionnaire are available at [11]. Out of the 10 questions, the odd
and the even questions yield strong agreement and disagreement,
respectively, for the high usability of a system. Each question’s
score contribution is a map to the range between 0 and 4. The
overall value of system usability is calculated as,
SU = ((Q1 − 1) + (5 −Q2) + (Q3 − 1) + (5 −Q4) + (Q5 − 1) + (5 −
Q6) + (Q7 − 1) + (5 −Q8) + (Q9 − 1) + (5 −Q10)) × 2.5.
We obtain 92 responses with the majority of the participants (57%)
having the age group of 25-35. Besides teachers and professors, we
also get responses from high school students, undergrad students,
and IT professionals. The participants confirmed that they use such

7 Including 7 instructors, altogether 13 participants participated in these surveys.
8 https://youtu.be/2eUVEoKKEpU

meeting platforms regularly for attending classroom lectures or
public tutorials.

For establishing the usefulness of our system, we check the SUS
score distribution from the public feedback. Figure 7a shows the
individual question-wise SUS score which confirms that the partici-
pants provide their feedback by properly reading the instruction,
concluding that they are valid users. On the other side, Figure 7b
reveals that 49% of the participants have given the SUS score of
more than 80 whereas the average SUS score is 74.18. This indicates
that the participants in the survey consider Stungage as a useful
system for understanding the students’ engagement.

(a) (b)

Figure 7: Statistical analysis of SUS: (a) question-wise, (b)
participant-wise

Besides the usability questions, we keep an optional open-ended
suggestion field in the feedback form. This results in receiving a few
inspiring words along with appreciation from the participants. One
of the participants mentioned “It looks like an interesting application
to me. But the efficiency of the facial recognition code needs to be
tested properly.” Truly, as our system uses various existing computer
vision tools for processing facial as well as presentation videos, the
system performance utterly depends on the efficacy of those tools.
We receive justifiable system performance under state-of-the-art
tools. Further improvement of those tools will promote our system.
Another valuable suggestion is – “Real-time interactions like pop up
questions and random opinion taking may be incorporated in the stu-
dent interface alongside the instructor video and content presentation.”
Here, the system only captures the current students’ involvement
status during the online class without involving them. Adding a rec-
ommender for improving the current students’ involvement status
will be interesting future work.

9 CONCLUSION
To the best of our knowledge, Stungage is the first of its kind that
identifies the discrete fixation target events followed by the visual,
contextual, and cognitive presence detection for measuring the
students’ engagement in the virtual classroom. While quantifying
the students’ engagement score, we also compute the presentation
score of the instructor for self-assessment. The thorough evaluation
from both lab-scale and in-the-wild analysis states that Stungage
performs well for the majority of the cases with good usability
feedback. However, Stungage still relies on video processing, which

https://youtu.be/2eUVEoKKEpU
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Table 1: Mean and standard deviation for in-the-wild study survey (numbers in the brackets denote standard deviation)

Survey Question with endpoints: "Not at all" (1) and "Very Much" (7)
Lecture with limited
set of student’s view

Lecture with students’
static image view Our Design

system
evaluation

How much do you feel that the system would help you to take the class? 4.38(1.33) 4.15(1.96) 5.31(1.9)
How distracting is the system for taking the class? 4.23(1.42) 1.77(1.19) 4.62(1.55)
How satisfying is the system for taking the class? 4.46(1.34) 3.92(1.9) 5.23(1.72)

How much would you like to take future class with the system? 4.69(1.2) 4.08(1.94) 5.38(2.27)
How much students’ privacy is maintained in the system? 2.62(1.39) 6.77(0.42) 5.23(1.25)

student
understandability

How much of a personal connection do you feel with the student? 4.77(2.12) 1.85(1.03) 4.08(1.82)
How do you feel easy to see the student understandability? 4.08(1.27) 1.92(1.33) 5.54(1.87)

How do you feel easy to respond the student? 5.23(0.97) 3.15(1.23) 5.38(0.84)
How aware are you of your presentation performance? 4.92(1.21) 2.23(0.89) 6.23(0.7)

is always a heavy task; therefore, it would be interesting to optimize
the system further to make it more suitable for handheld devices.
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