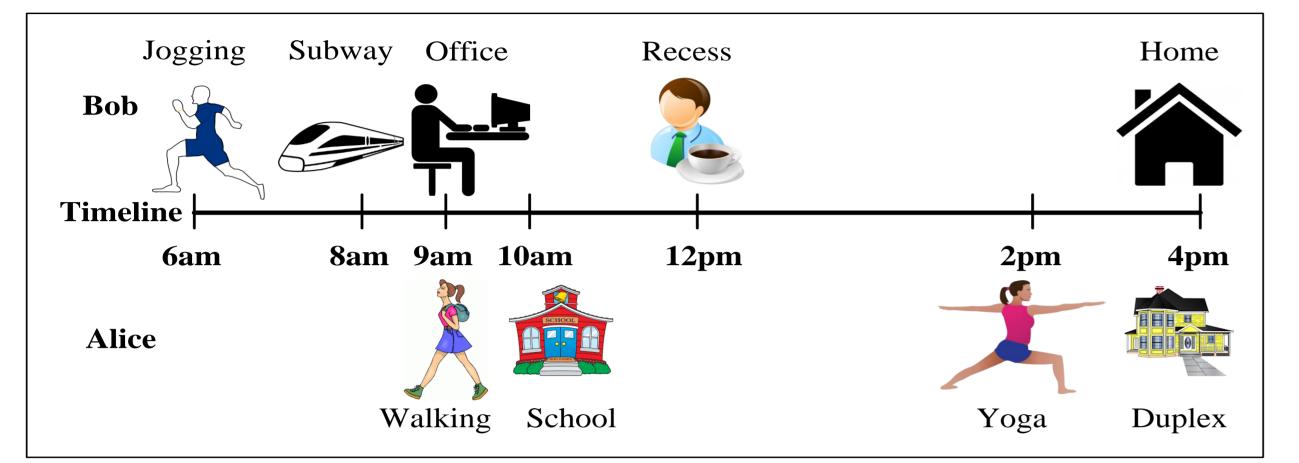
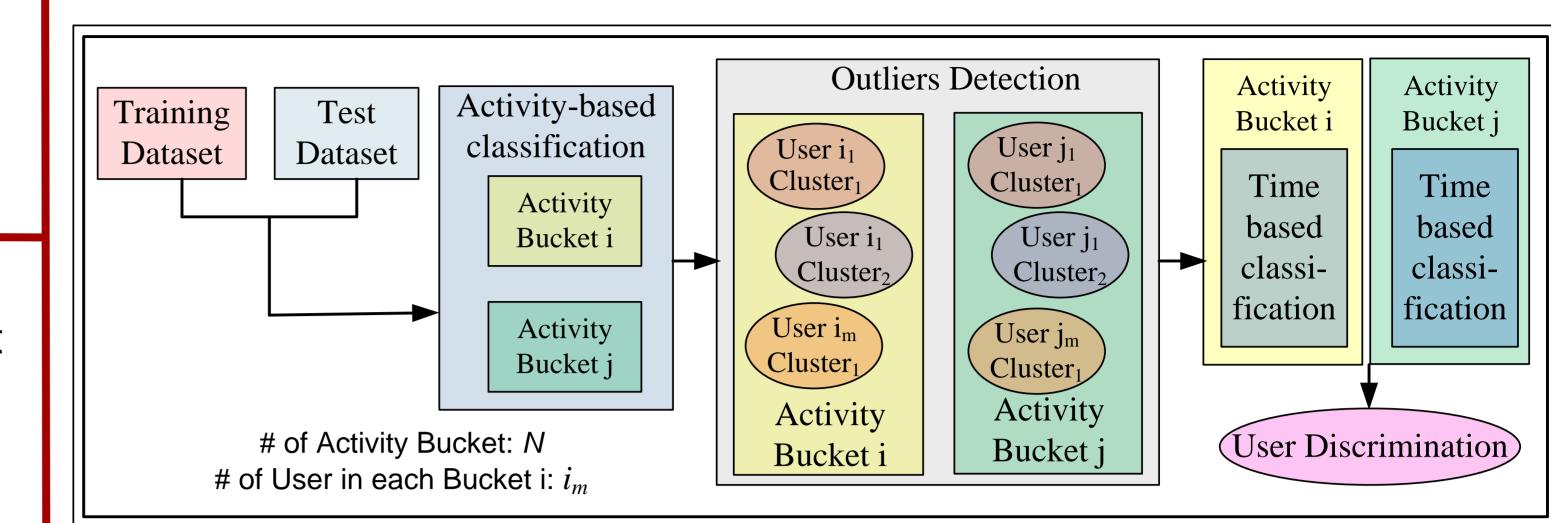


UDAT: User Discrimination using Activity-Time Information


Snigdha Das*, Dibya Jyoti Roy*, Subrata Nandi[†], Sandip Chakraborty*, Bivas Mitra* *Dept. of CSE, IIT Kharagpur, India; †Dept. of CSE, NIT Durgapur, India Email: snigdhadas@sit.iitkgp.ernet.in


Objective

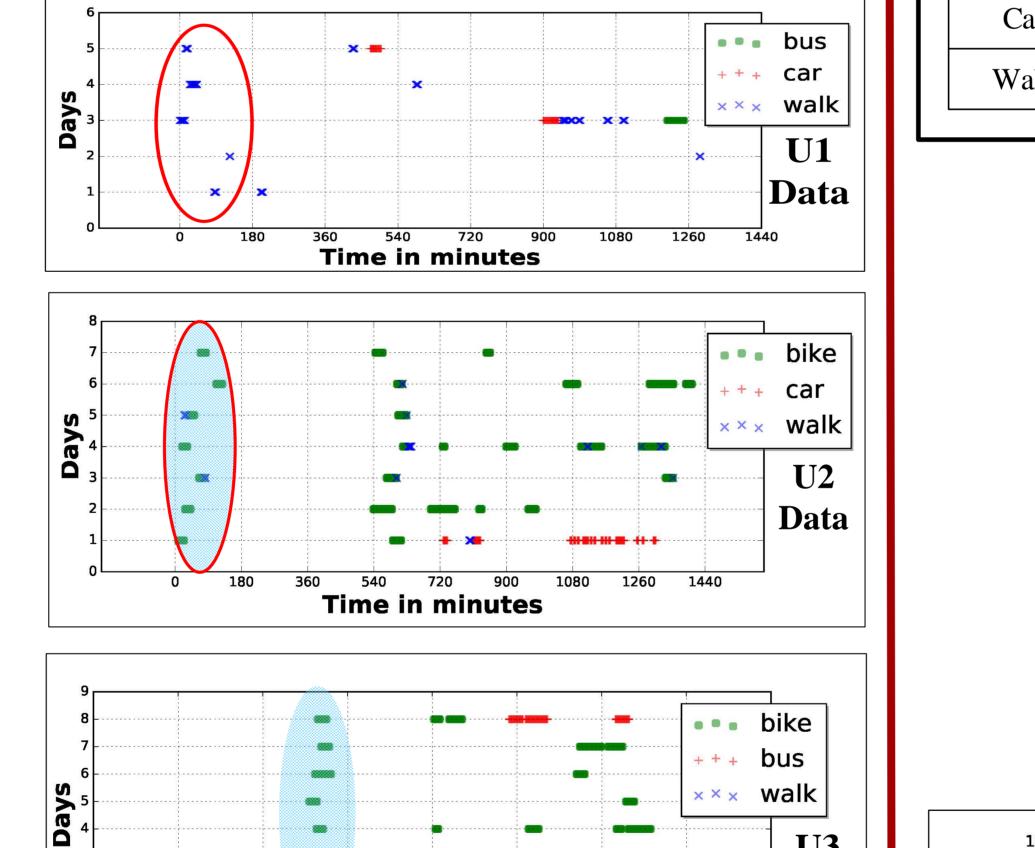
- Developing UDAT, an user identifier cum discriminator model
- Leveraging on the daily activity patterns and
- Temporal information of the users
- In a privacy preserving manner

Key Idea

- Activity pattern followed by an individual carries a signature of that person
- **Example:** Alice and Bob's daily routine in the weekdays

UDAT Model

Activity based Classification: \checkmark


Daily activity patterns of Alice & Bob are substantially different in terms of activities and temporal information

Motivation

- **Personalized recommendation** is necessary for the development of the future generation services in the domain of "Smart City"
- Smart devices should **automatically recognize** individual users
- **Registering** individual users each time may appear **restrictive**
- System should automatically identify the users in a privacy preserved manner without accessing any personally identifiable information (like IMEI) and perform service differentiation

Does daily routine discriminate the users?

Daily routine of three users (Geolife¹ Dataset) Major activity of U1: walking Major activity of U2: biking Performed activities simply **differentiate** the users U1 and U2 Biking time of U2: 0 - 180 (12am - 3am) minutes of the day Biking time of U3: 360 – 540 (6am - 9am) minutes of the day Routine of U2 and U3 varies significantly over the period of **time**

720

Time in minutes

U3

Data

1260

- The module classifies users based on the activities performed by them
- It construct one bucket for each activity
- Each activity bucket contains information of several users

Outliers Detection: \checkmark

- Activity bucket holds normal activity pattern along with few exception
- This module eliminates those exception using **DBSCAN** model
- It identifies the users' multiple patterns of activity

Temporal Classification: \checkmark

- The module discriminates the users inside each activity bucket
- **Models:** kNN, Random Forest, Logistic Regression, SVC
- **Temporal features**:
 - First start time of the activity
 - Total duration for that activity
 - Maximum activity duration
 - iv. Activity trip count

GEOLIFE DATASET: ACCURACY (%) COMPARISON OF DIFFERENT MODELS (KM: Kwapisz's MODEL) Activity UDAT KM UDAT KM Activity 82.92 85.47 69.47 65.03 Bike Bus 83.20 70.50 Car 79.46 68.68 Subway

Experimental Results

- Geolife¹ DataSet
 - UDAT Model accuracy – **73.3%**
 - *Kwapisz's*² Model accuracy – 63%

Contributions

360

Developing UDAT, a user discrimination model, which involves \checkmark three major modules - (a) Activity based classification, (b) Outliers detections, and (c) Temporal classification

Activity	UDAT	Kwapisz's Model	UDAT_Outlier
Tilting	NA	39.29	31.13
InVehicle	NA	32.65	33.82
OnBicycle	100.00	22.36	48.03
OnFoot	65.07	32.92	40.78
Running	NA	32.77	NA
Still	84.64	33.16	46.75
Unknown	73.01	24.56	41.61
Walking	NA	56.86	NA
Average	80.68	34.32	40.35

UDAT DataSet

- **UDAT** Model accuracy – **80.68%**
- *Kwapisz's*² Model accuracy – 34.32%
- UDAT_Outlier Model accuracy – 40.35%
- SVC Accuracy (%) 70 60 OnBicycle OnFoot Still Unknown AvgAllAccuracy Activity

- **Different ML** Algorithms
 - Average accuracy for all activities > 70%
 - **Random Forest** surpasses others

- Developing smartphone based data collection framework, named as **UDAT Dataset**
- UDAT model discriminates users with 73.3% and 80.68% \checkmark **accuracy**, for Microsoft Geolife and UDAT datasets respectively

Dataset

- Geolife¹ Dataset:
 - Users: 24 out of 178 labelled
 - Time: 4 years
 - Transportation mode: Bike, Bus, Car, Subway, and Walk
- **UDAT Dataset:** Launch experiment at IIT Kharagpur \checkmark
 - Users: 15
 - Time: 3 months
 - Activity: InVehicle, OnFoot, OnBicycle, Running, Walking, Still, Tilting, and Unknown

Conclusion

- Demonstrate activity signatures as a valid alternative to \checkmark sensor-driven user identification paradigm
- Developed **UDAT** model **discriminates** the users using the daily activity patterns
- Experimental results state that UDAT model outperformed the sensor-driven competing algorithms for both Microsoft Geolife¹ and UDAT dataset

References

- Y. Zheng, L. Wang, R. Zhang, X. Xie, and W.-Y. Ma, "Geolife: Managing and understanding your past life over maps," IEEE Mobile Data Management, 2008, pp. 211–212.
- 2. J. R. Kwapisz, G. M. Weiss, and S. A. Moore, "Cell phone-based biometric identification," IEEE Biometrics: Theory Applications & Systems, 2010, pp. 1–7.

Acknowledgement: We would like to thank the "MDM 2017" organizers for awarding us with the student travel grant and Infosys for providing the financial assistance for paper presentation

Accuracy chart of UDAT dataset using different classifier